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We present a hybrid scheme based on classical density functional theory and
machine learning for determining the equilibrium structure and thermodynamics of
inhomogeneous fluids. The exact functional map from the density profile to the one-
body direct correlation function is represented locally by a deep neural network. We
substantiate the general framework for the hard sphere fluid and use grand canonical
Monte Carlo simulation data of systems in randomized external environments during
training and as reference. Functional calculus is implemented on the basis of the neural
network to access higher-order correlation functions via automatic differentiation
and the free energy via functional line integration. Thermal Noether sum rules are
validated explicitly. We demonstrate the use of the neural functional in the self-
consistent calculation of density profiles. The results outperform those from state-
of-the-art fundamental measure density functional theory. The low cost of solving an
associated Euler–Lagrange equation allows to bridge the gap from the system size of the
original training data to macroscopic predictions upon maintaining near-simulation
microscopic precision. These results establish the machine learning of functionals as
an effective tool in the multiscale description of soft matter.

classical density functional theory | machine learning | statistical mechanics | soft matter

The problem with density functional theory (DFT) is that you do not know the density
functional. Although this quip by the late and great Yasha Rosenfeld (1) was certainly
meant in jest to a certain degree, it does epitomize a structural assessment of classical
DFT (2–5). As a general formulation of many-body statistical physics, the framework
comprises a beautiful and far-reaching skeleton of mathematical formalism centered
around a formally exact variational minimization principle (2, 6). In practice, however,
the theory needs to be fleshed out by approximations of all means conceivable in our
efforts to get to grips with the coupled many-body problem that is under consideration.
Specifically, it is the excess (over ideal gas) intrinsic Helmholtz free energy Fexc[�],
expressed as a functional of the position-resolved density profile �(r), which needs to be
approximated.

Decades of significant theoretical efforts have provided us with a single exact functional,
that for nonoverlapping hard rods in one spatial dimension, as obtained by another hero
in the field, Jerry Percus (7). Nevertheless, useful DFT approximations range from the
local density approximation for large-scale features which are decoupled from microscopic
length scales, to square-gradient functionals with their roots in the 19th century, to the
arguably most important modern development, that of the fundamental measure theory
(FMT) as kicked off by Rosenfeld (8) and much refined ever since (9–16). FMT is a
geometry-based framework for the description of hard sphere systems and it has deep
roots in the Percus–Yevick (17) and scaled-particle theories (4), which Rosenfeld was
able to unify and generalize based on his unique theoretical insights (18).

The realm of soft matter (19–21) stretches far beyond the hard sphere fluid. FMT
remains relevant though in the description of a reference system as used, e.g., in studies
of hydrophobicity, where the behavior of realistic water models (22, 23) is traced back
to the simpler Lennard-Jones fluid, which in turn is approximated via the hard sphere
FMT functional plus a mean-field contribution for describing interparticle attraction
(20, 24, 25). Further topical uses of FMT include the analysis of the three-dimensional
electrolyte structure near a solid surface (26, 27) and the problem of the decay length of
correlations in electrolytes (28).

There is a current surge in the use of machine learning techniques in soft matter, e.g., for
its characterization (29), engineering of self-assembly (30), structure detection (31), and
for learning many-body potentials (32, 33). Within classical DFT, machine learning was
used to address ordering of confined liquid crystals (34), and free energy functionals were
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obtained for one-dimensional systems from convolutional (35)
and equation-learning (36) networks as well as within a Bayesian
inference approach (37). Cats et al. (38) used machine learning
to improve the standard mean-field approximation of the excess
Helmholtz free-energy functional for the Lennard-Jones fluid. In
nonequilibrium, de las Heras et al. (39) have reported a method
to machine-learn the functional relationship of the local internal
force for a steady uniaxial compressional flow of a Lennard-Jones
fluid at constant temperature. As prescribed by power functional
theory (40, 41), the functional dependence in nonequilibrium
not only incorporates the density profile but also the one-body
current.

In this work, we return to the problem of describing and
predicting the structure and thermodynamics of inhomogeneous
equilibrium fluids. We show that a neural network can be trained
to accurately represent the functional dependence of the one-
body direct correlation function with respect to the density
profile. The presented methods are directly applicable to virtually
arbitrary fluids with short-ranged interparticle interactions. In
the following, we focus on the well-studied hard sphere fluid in
order to exemplify our framework and to challenge the available
highly accurate analytic approaches from liquid integral equation
theory and FMT. We give more details about the feasibility of
generalizations in the discussion. Reference data for training and
testing the model are provided by grand canonical Monte Carlo
(GCMC) simulations that cover a broad range of randomized
inhomogeneous environments in planar geometry.

We implement functional calculus on the basis of the trained
neural functional to infer related physical quantities and demon-
strate their consistency with known literature results both in bulk
and in inhomogeneous systems. In particular, we highlight the
accessibility of the fluid pair structure, the determination of free
energies and equations of state as well as the validation of thermal
Noether sum rules (42). These results corroborate that the neural
functional exceeds its role as a mere interpolation device and
instead possesses significant representational power as a genuine
density functional for the prediction of nontrivially related
physical properties. We apply the trained neural network in the
DFT Euler–Lagrange equation, which enables the self-consistent
calculation of density profiles and which hence constitutes a
neural-network-based DFT or short neural DFT. This method
alleviates conventional DFT from the burden of having to find
suitable analytic approximations while still surpassing even the
most profound existing treatments of the considered hard sphere
fluid via FMT functionals (8, 13, 14) in accuracy. We further
demonstrate the fitness of the method for the straightforward
application to multiscale problems. Neural DFT therefore
provides a way to transfer near-simulation microscopic precision
to macroscopic length scales, which serves as a technique to
predict properties of inhomogeneous systems which far exceed
typical box sizes of the original training data.

This work is structured as follows. The relevant physical back-
ground of liquid state theory is provided in Section A.1. Details
of the simulations as well as of the neural network are given in
Sections A.2 and A.3. The training procedure and results for the
achieved metrics that measure its convergence are presented in
Section A.4. We proceed by testing physical properties of the
trained model and use automatic differentiation of the neural
network in Section B.1 to access pair correlations, which are then
compared to bulk results from both the Percus–Yevick theory and
from simulations. The consistency of the neural direct correlation
functional to satisfy thermal Noether sum rules is validated in
Section B.2, and different ways to obtain the bulk equation

of state as well as free energies in inhomogeneous systems are
given in Section B.3. In Section C.1, we show the application of
the neural functional to the self-consistent calculation of density
profiles via the DFT Euler–Lagrange equation and describe the
technical details and conceptual advantages of this neural DFT
over analytic approaches. In Section C.2, the results are compared
to those from FMT, and in Section C.3, the relevance of the
method for making macroscopic predictions is illustrated for
cases of randomized external potential and for sedimentation
between hard walls on length scales that far exceed the training
simulation box sizes. We conclude with a discussion of the results
and give an outlook on possible improvements and extensions of
the method as well as to its application for different fluid types,
in more general geometries and in nonequilibrium.

Results
A. Machine Learning Intrinsic Correlations.
A.1. Physical background. We start with the standard relation for
the one-body direct correlation function c1(r) of liquid state
theory (4),

c1(r) = ln �(r) + �Vext(r)− ��, [1]

where r denotes the spatial position and � = 1/(kBT ) with the
Boltzmann constant kB and absolute temperature T . The three
terms on the right-hand side of Eq. 1 represent respectively
the ideal gas contribution, the external potential Vext(r) and
the influence of the particle bath at chemical potential �. The
logarithm in Eq. 1 is understood as ln[Λ3�(r)] with the
thermal wavelength Λ, which can be set to the particle size �
without any loss of information in the present classical context.
For a prescribed external potential Vext(r), knowledge of the
corresponding equilibrium density profile �(r) allows to compute
c1(r) explicitly via Eq. 1. This relationship can be viewed as
a locally resolved chemical potential balance: the contribution
from the ideal gas, kBT ln �(r), from the external potential,
Vext(r), and from interparticle interactions, −kBTc1(r), add up
at each position to �, which is necessarily uniform throughout
an equilibrium system.

However, the notation in Eq. 1 is oblivious to a central result
shown by Evans (2), thereby kicking off a modern theory for the
description of inhomogeneous fluids. For given type of internal
interactions, the spatial variation of the function c1(r) is already
uniquely determined by the spatial form of the density profile �(r)
alone, without the need to invoke the external potential explicitly.
From this vantage point of classical DFT, the dependence of c1(r)
on �(r) is not merely pointwise but rather with respect to the
values of the entire density profile, which determine c1(r) at each
given position r. Formally, this relationship is exact (2, 4), and it
constitutes a functional dependence c1(r; [�]), which is indicated
by brackets here and in the following and which is in general
nonlinear and nonlocal. As we will demonstrate, the existence
of such a universal functional mapping makes the problem
of investigating inhomogeneous fluids particularly amenable to
supervised machine learning techniques.

In most formulations of classical DFT, one exploits the fact
that the intrinsic excess free energy functional Fexc[�] acts as a
functional generator such that the one-body direct correlation
function is obtained via functional differentiation with respect to
the density profile,

c1(r; [�]) = −
��Fexc[�]
��(r)

. [2]
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A compact description of standard formulae for the calculation
of functional derivatives can be found in ref. 41. In order to make
progress in concrete applications, one typically needs to rely on
using an approximate form of Fexc[�] for the specific model under
consideration, as determined by its interparticle interactions.
DFT is a powerful framework, as using c1(r; [�]) obtained from
Eq. 2 with a suitable expression for Fexc[�] turns Eq. 1 into an
implicit equation for the equilibrium density profile �(r). In the
presence of a known form of Vext(r), one can typically solve
Eq. 1 very efficiently, allowing ease of parameter sweeps, e.g., for
exhaustive phase diagram explorations. On the downside, Fexc[�]
and thus also c1(r; [�]) remain approximate, and the development
of analytic tools has certainly slowed down over several years if
not decades.

Here, we proceed differently and bypass the excess free energy
functional Fexc[�] at first. Instead, we use a deep neural network
to learn and to represent the functional relationship �(r)→ c1(r)
directly, which has significant advantages both for the generation
of suitable training data as well as for the applicability of the
model in the determination of fluid equilibria. This investigation
is based on GCMC simulations that serve to provide training,
validation, and test data. Discriminating between these three
roles of use is standard practice in machine learning and we give
further details below.
A.2. Simulation method. Generating the simulation data is
straightforward, and we use the following strategy, adopted to
planar situations where the position dependence is on a single po-
sition variable x while the system remains translationally invariant
in the y and z direction. This geometry is highly relevant to iden-
tify the physics in planar capillary and adsorption situations and
facilitates ease of accurate sampling. We employ randomized sim-
ulation conditions by generating external potentials of the form

Vext(x) =
4∑

n=1
An sin

(
2�nx
L

+ �n

)
+
∑
n

V lin
n (x), [3]

where An and �n are randomly selected Fourier coefficients
and phases, respectively, and L is the simulation box length in
the x direction. The phases �n are chosen uniformly in the
interval [0, 2�), and values of An are drawn from a normal
distribution with zero mean and variance 2.5. We choose
L = 20�, although there is no specific compliance requirement
for the neural network (see below), and the lateral box lengths
are set to 10� to minimize finite-size effects. Periodic boundary
conditions apply in all spatial directions. The sinusoidal terms in
Vext(x) are complemented by up to five piecewise linear functions
V lin(x) = V1 + (V2 − V1)(x − x1)/(x2 − x1) for x1 < x < x2
and 0 otherwise, for which the parameters 0 < x1 < x2 < L,
V1, and V2 are again chosen randomly. The locations x1 and x2
are distributed uniformly while V1 and V2 follow again from an
unbiased normal distribution with variance 4. Additionally to
the discontinuous linear segments, we explicitly impose planar
hard walls in a subset of the simulations by setting Vext(x) =∞
for x < xw/2 and x > L − xw/2, i.e., near the borders of
the simulation domain; the width xw of the wall is chosen
randomly in the interval 1 ≤ xw/� ≤ 3. To cover a broad range
from dilute to dense systems, the chemical potential is chosen
uniformly within the range −5 ≤ �� ≤ 10 for each respective
GCMC simulation run. The observed mean densities range
from 0.006�−3 to 0.803�−3, yet smaller and much larger local
densities occur due to the inhomogeneous nature of the systems.

In total, 750 such GCMC runs are used, where for given
form of Vext(x), the planar one-body profiles �(x) and c1(x) are

obtained. The former is acquired from straightforward histogram
filling and the latter from evaluating Eq. 1 on the basis of the
sampled histogram for �(x) as well as the known form of Vext(x)
and value of � for the specific run under consideration. As Eq. 1 is
undefined for vanishing density, we have excluded regions where
�(x) = 0 such as within the hard walls. By modern standards of
computational resources, the workload for the generation of the
simulation data is only moderate at a total CPU time of∼104 h.
A.3. Neural network. We use a deep neural network (43) to
represent the functional map from the density profile to the local
value of the one-body direct correlation function at a given point.
That is, instead of the entire function, we construct the network
to output only the scalar value c1(x) for a certain position x when
supplied with the surrounding inhomogeneous density. The
relevant section of the density profile comprises the values of �(x)
in a specified window around a considered location x, as described
below. Despite the locality of the method, access to the entire
(discretized) one-body direct correlation profile is immediate via
evaluation of the neural network at pertinent positions x across
the domain of interest. Multiple local evaluations of the network
remain performant on highly parallel hardware such as GPUs
when passing the input accordingly in batches. A schematic
picture of the network architecture is given in Fig. 1 and is
explained in the following.

The functional dependence on the density profile is realized
by providing discretized values of �(x) on an equidistant grid
with resolution Δx = 0.01�. As c1(x; [�]) depends only on the
immediately surrounding density profile around a fixed location
x, we restrict the input range x′ to a sufficiently large window
x′ ≤ |x − xc|. We choose the cutoff xc = 2.56� based on
simulation data for the bulk direct correlation function (44) and
on the evaluation of training metrics for different window sizes xc .
Increasing the value of xc further led to no improvement in the
performance of the trained neural network.

This behavior is expected from theoretical considerations, as
the one-body direct correlation function vanishes quickly for
short-ranged pair potentials (4). We recall that in FMT, xc = �
by construction. Note that the choice of c1(x; [�]) as our target
functional is not coincidental but that its quick spatial decay
rather is a pivotal characteristic central to the success of our

Fig. 1. We represent the functional mapping from the density profile �(x)
to local values of the one-body direct correlation function c1(x) in planar
geometry via a neural network. The density profile is discretized on a regular
spatial grid with resolution 0.01� and given within a region around the
location of interest to the input layer. Three fully connected layers with
continuously differentiable activation functions enable the inference of the
nonlinear and nonlocal functional map. The output layer consists of a single
node which yields the predicted value of c1(x) at the chosen location.
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method. To contrast this, assume that one attempts to model
the functional mapping �loc(x) = �− Vext(x)→ �(x), thereby
naively imitating the simulation procedure. This task poses major
challenges due to the long-range nature of density correlations
induced by an external potential, which is circumvented in our
case by the choice of a more manageable target functional.

The input layer involves 513 nodes and is followed by three
fully connected hidden layers with 512 units each. The output
layer consists of a single node for the scalar value of c1(x) at
the specified location x. In order to realize a nonlinear input–
output mapping of the neural network, activation functions
are applied to the output of each node within a hidden layer
(see also ref. 43 for a pedagogical introduction to the design
of neural networks). We deviate here from the most common
choice of a rectified linear unit (ReLU) and instead employ
continuously differentiable activation functions such as the
exponential linear unit or the softplus function (45). This
choice leads to substantial improvements during training and
in particular when using automatic differentiation to evaluate
two-body quantities; see Sections B.1 and B.2. We attribute
the superior performance to the fact that activation functions
which are not continuously differentiable and which vanish in
certain domain ranges (such as ReLU) reinforce sparsity of the
activation output, i.e., the tendency to set many units of a hidden
layer identically to zero (46). While this property is desired in
many machine learning tasks (e.g., for classification), it hinders
the accurate representation of the functional relation c1(x; [�]) in
our case. The resulting neural functional for the one-body direct
correlation function is denoted in the following by c?1(x; [�]) and
related quantities which follow from it by inference are marked
accordingly by a superscript star.
A.4. Training procedure and metrics. The machine learning rou-
tines are implemented in Keras/Tensorflow (43) and we use the
standard Adam (47) optimizer for the adjustment of the network
parameters in order to fit c?1(x; [�]) against the simulation
reference c1(x). The problem at hand is a regression task. Hence,
the mean squared error is chosen as a suitable loss function and the
mean average error serves as a validation metric. Since the model
shall infer the pointwise value c1(x) from a density section around
a specified location x, see Fig. 1, the simulation data cannot be
passed as they are to the neural network. Instead, windowed
views of the density profile have to be generated prior to the
training loop, which correspond to the target value c1(x) at the
center x of the respective window. A periodic continuation of all
simulation profiles is valid due to periodic boundary conditions.
Additionally, we use data augmentation to benefit from the
inherent mirror symmetry (i.e., x → −x) of the problem and
thus effectively double the number of training datasets. As is
customary, we separate the independent simulation results prior
to performing the machine learning routines: 150 are kept aside as
a test set, 150 serve as validation data to monitor training progress
and 450 are used for the actual training of the neural network.

Modeling the functional relationship of c1(x; [�]) locally, i.e.,
inferring pointwise values individually instead of outputting the
entire profile at once, has numerous conceptual and practical
advantages. Regarding the feasibility of the neural network in
concrete applications, one is free to choose an arbitrary box length
L when gathering training data and more importantly to readjust
the value of L when using the trained neural network for making
predictions (cf. Section C.3). From a physical point of view,
providing only local density information has the merit of already
capturing the correlated short-range behavior of c1(x; [�]). If
the neural network were to output the entire one-body direct
correlation profile from a given density profile �(x) at once,

this inherent locality would have to be learned instead, hence
leading to a much more elaborate training process. Last, the
fine-grained nature of the training data turns out to be highly
beneficial from a machine learning perspective. Note that one can
generate 9·105 input–output pairs from 450 training simulations
in the present context (with the values being doubled after
data augmentation). The increased cardinality of the training
set enables better generalization of the model and also prevents
overfitting, e.g., to the statistical noise of the sampled profiles.

We train the model for 100 epochs in batches of size 256 and
decrease the learning rate exponentially by ∼ 5% per epoch
from an initial value of 0.001. This results in a best mean
average error of 0.0022 over the validation set, which is of the
same order as the estimated average noise of the simulation data
for c1(x). Therefore, we deem our neural network to possess
full representational power of the local functional relationship
c1(x; [�]) within the conditions of the provided simulation data.

B. Examining the Neural Correlation Functional.
B.1. Two-body bulk correlations. Besides monitoring standard
metrics such as the mean average error over a test set, arguably
deeper physical insights into the rigorous structure of the statisti-
cal mechanics at hand serve for assessing the quality of the neural
functional c?1(x; [�]). We first ascertain that the model gives an
accurate representation of the physics of bulk fluids. Despite
the apparent simplicity of this case, this is a highly nontrivial
test as the training data solely covered (strongly) inhomogeneous
situations. For this, we investigate the pair structure and aim at
implementing the two-body direct correlation functional, which
is formally defined as the functional derivative (4)

c2(r, r′; [�]) =
�c1(r; [�])
��(r′)

. [4]

On the basis of the neural network, we can make use of
the powerful automatic differentiation techniques. This allows
to create an immediate analog of Eq. 4 via c?2(x, x

′; [�]) =
�c?1(x; [�])/��(x

′), where the functional derivative �/��(x′)
is evaluated by reverse mode automatic differentiation with
respect to the input values of the discretized density profile.
In common machine learning frameworks, this requires only
high-level code, e.g., GradientTape in Keras/Tensorflow (43).
The numerical evaluation of c?2(x, x

′; [�]) is performant as reverse
mode automatic differentiation generates executable code that is
suitable for building derivatives with respect to multiple input
variables simultaneously.

We obtain the bulk direct correlation function in planar
geometry as the special case c̄b2(x, �b) = c2(0, x; [�b]), where
we have introduced the bulk density �b(x) = �b = const. (In
the notation, the parametric dependence on �b is dropped in the
following). Note that c̄b2(x) is distinct from the more common
radial representation cb2(r), as our geometry implies an integration
over the lateral directions y and z, i.e.,

c̄b2(x) =
∫

dy dz cb2

(
r =

√
x2 + y2 + z2

)
= 2�

∫
∞

x
dr rcb2(r),

[5]

where the last equality follows from using radial coordinates and
substitution. The standard radial form cb2(r) can however be
recovered by differentiating Eq. 5 with respect to x such that
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cb2(r) = −
c̄b′2 (r)
2�r

, [6]

where c̄b′2 (r) denotes the derivative of c̄b2(x) evaluated at x = r.
Numerical artifacts might occur particularly for small values of r
as evaluating Eq. 6 requires the numerical derivative of c̄b2(x) as
well as a division by r.

We perform a Fourier transform of the planar real space
representation c̄b2(x) and utilize radial symmetry in Fourier space.
This acts as a deconvolution of Eq. 5 and directly yields the radial
Fourier (Hankel) transform of cb2(r),

c̃b2(k) =
4�
k

∫
∞

0
dr r sin(kr)cb2(r). [7]

The inverse transform is identical to Eq. 7 up to a factor of
(2�)−3 upon interchanging r and k. To go further, the bulk
Ornstein–Zernike equation (4)

c̃b2(k) =
h̃(k)

1 + �bh̃(k)
, [8]

is used to obtain the total correlation function h̃(k) from c̃b2(k)
in Fourier space after rearrangement. Recall that the radial
distribution function follows directly via g(r) = h(r) + 1; here,
h(r) is the real space representation of h̃(k). The static structure
factor S(k) is then given as:

S(k) = 1 + �bh̃(k). [9]

In Fig. 2, results of c̄b2(x), c
b
2(r), c̃

b
2(k), h̃(k), and S(k) are

shown for different bulk densities �b�3 = 0.4, 0.7, 0.9. From our
neural functional, we obtain c̄b?2 (x) = �c?1(0; [�])/��(x)|�=�b ,
i.e. the autodifferentiated network is evaluated at spatially
constant density �b. The total correlation function and the
static structure factor follow from Eqs. 8 and 9 after having
computed c̃b?2 (k) via a numerical Fourier transform of c̄b?2 (x). For
comparison, we also depict reference data obtained analytically
from the Percus–Yevick theory (17) and reproduced from
simulation results of Groot et al. (44). Good agreement is found
between simulation and the autodifferentiated neural network,
while the Percus–Yevick result shows noticeable deviations in
c̄b2(x). The latter overestimates the depth of the core region x < �,
and this discrepancy increases for larger bulk densities. The neural
functional yields a clear improvement over the Percus–Yevick
theory and shows only marginal differences to the simulation
results of ref. 44 for both the planar real space and the radial
Fourier space representation of the two-body direct correlation
function. In h̃(k) and S(k), the severity of the discrepancies
of simulation and machine learning data to the Percus–Yevick
results decreases, but a difference is still noticeable in particular for
large bulk densities. A slight mismatch to the simulation reference
is observed in the magnitude and phase of the oscillations of the
Percus–Yevick static structure factor SPY(k), and this correction is
reproduced very well by the neural functional. Note that although
one arrives at radial representations of the quantities h̃(k) and
S(k) in Fourier space, performing the radial backtransform to real
space numerically according to the inverse of Eq. 7 is generally a
“notoriously difficult task” (48) and is not considered here.

This successful test reveals that, while being trained solely
with one-body profiles, the neural functional c?1(x; [�]) contains
full two-body information equivalent in bulk to the radial

A

B

C

Fig. 2. We compare (A) the planar direct correlation function c̄b2(x), (B) its
radial Fourier space representation c̃b2(k), and (C) the static structure factor
S(k) for different bulk densities �b�3 = 0.4,0.7,0.9 (as indicated). Data are
shown as obtained from the Percus–Yevick theory (dotted), from simulation
results by Groot et al. (44) (dashed) and from our neural functional c?1(x; [�])
(solid), where c̄b?

2 (x) is acquired via automatic differentiation. The inset in
panel (A) shows the radial direct correlation function cb2(r) as obtained via
Eq. 6. In panel (B), the inset depicts the total correlation function h̃(k) in
Fourier space, which follows from c̃b2(k) via the bulk Ornstein–Zernike Eq. 8.
The inset in panel (C) displays the deviation of S(k) to the Percus–Yevick
result SPY(k) for the simulation data and the neural functional. Simulation
and machine learning results are in very good agreement with each other
while the Percus–Yevick theory shows quantitative discrepancies.

distribution function g(r). The pair correlations can be accessed
via automatic differentiation at low computational cost, and
they are consistent with known bulk results. We recall that
this is a mere by-product of the neural network and that no
such two-body information has been explicitly incorporated
into the training. More so, Fig. 2 demonstrates that the bulk
quantities c̄b2(x), c̃b2(k), h̃(k), and S(k) as obtained from
c?1(x; [�]) substantially outperform the Percus–Yevick theory and
almost attain simulation quality. In SI Appendix, we illustrate
that higher-order correlations such as the three-body direct
correlation functional c?3(x, x

′, x′′; [�]) follow analogously via
nested automatic differentiation. On this level, differences to
FMT results are even more prominent than the deviations
to the two-body Percus–Yevick results. As we will show in
Section C.2, the accuracy of predictions from the neural network
also holds in inhomogeneous situations, where FMT serves again
as an analogous and arguably even more challenging theoretical

PNAS 2023 Vol. 120 No. 50 e2312484120 https://doi.org/10.1073/pnas.2312484120 5 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 3
7.

4.
22

8.
25

0 
on

 D
ec

em
be

r 
11

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
37

.4
.2

28
.2

50
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2312484120#supplementary-materials


baseline than the Percus–Yevick bulk theory. Before doing so, we
lay out additional consistency tests and quality assessments that
are applicable in inhomogeneous systems.
B.2. Noether sum rules. In order to further elucidate whether
c?1(x; [�]) quantitatively reproduces fundamental properties of
equilibrium many-body systems, we make use of exact sum rules
that follow from thermal Noether invariance (42):

∇c1(r) =
∫

dr′ c2(r, r′)∇ ′�(r′), [10]

∫
dr �(r)

∫
dr′ �(r′)∇c2(r, r′) = 0. [11]

Both Eqs. 10 and 11 apply in any equilibrated inhomogeneous
system regardless of the type of internal interactions. While
the interparticle interaction potential does not appear explicitly
in Eqs. 10 and 11, it nevertheless determines the functionals
c1(r; [�]) and c2(r, r′; [�]). Recall that the spatial gradient of the
one-body direct correlation function can be identified with the
internal equilibrium force profile, fint(r) = kBT∇c1(r) (41).

We verify that the neural functional complies with the above
sum rules Eqs. 10 and 11 as follows. Analogous to Section B.1,
we use autodifferentiation to evaluate Eq. 4, but this time, we
retain the full inhomogeneous structure of c?2(x, x

′; [�]). The
left-hand side of Eq. 10 is obtained straightforwardly from
simple evaluation of the neural functional and numerical spatial
differentiation. As input for �(x), we use the simulated density
profiles of the test set. Care is required when evaluating the
spatial gradients∇�(x),∇c?1(x; [�]) and∇c?2(x, x

′; [�]) due to the
amplification of undesired noise, which we reduce by applying a
low-pass filter after having taken the numerical derivatives. The
volume integrals reduce in planar geometry to

∫
dr = A

∫
dx ,

where A is the lateral system area.
In Fig. 3, three typical profiles for the left- and right-hand

side of Eq. 10 are shown. In all three systems, both sides
of the equation coincide up to numerical noise due to the
required spatial derivatives. Additionally, we define errors via
scalar deviations from equality in Eqs. 10 and 11 respectively as

e1 =
∥∥∥∥∇c1(x)− A

∫
dx′ c2(x, x′)∇ ′�(x′)

∥∥∥∥
∞

, [12]

e2 = A2
∫

dx �(x)
∫

dx′ �(x′)∇c2(x, x′), [13]

where ‖ · ‖∞ denotes the maximum norm. Fig. 3 A and B depict
results for e1 and e2 resolved with respect to the mean density
�̄ =

∫
dr �(r)/V for all 150 density profiles of the test set, where

V denotes the volume of the system. The small magnitudes
of the observed error values indicate that the neural network
satisfies the Noether identities 10 and 11 to very high accuracy.
Outliers are caused mostly by the moderate numerical noise of
the spatial gradients (Fig. 3, III ) and are no hindrance in practical
applications of the neural functional.

This confirmation demonstrates that our method transcends
the neural network from a mere interpolation device of the
simulation training data to a credible standalone theoretical
object. The fact that one is able to carry out consistent
and performant functional calculus indeed renders c?1(x; [�])
a neural-network-based density functional. Besides functional
differentiation, we show next that functional line integration acts
as the inverse operation and provides access to the corresponding
free energy. SI Appendix gives further insight into the symmetry
properties of c?2(x, x

′; [�]), which serve as a prerequisite for the

A

B

Fig. 3. Typical profiles of the right- and left-hand sides of Eq. 10 are shown
for three test scenarios in panels (I), (II), and (III), where one can verify
their high level of agreement across the entire inhomogeneous systems.
Additionally, the respective scalar discrepancies e1 and e2 of the Noether
identities Eqs. 10 and 11 are displayed, defined as (A) the maximum norm
of the difference of left- and right-hand side of Eq. 10 and (B) the value of
the left-hand side of Eq. 11. Across all mean densities �̄ of the test set, the
sum rules are satisfied to very high accuracy by our model. Some outliers
remain which we attribute to the numerical computation of spatial gradients
appearing in Eqs. 10 and 11; see also panel (III) for an example of the noise
that this introduces in the respective terms of Eq. 10 particularly in the vicinity
of hard walls.

existence of a generating excess free energy functional F ?
exc[�]; we

recall Eq. 2.
B.3. Equation of state and free energy. Although the machine
learning procedure operates on the level of the one-body direct
correlation function, the excess free energy Fexc[�] is accessible
by functional line integration (49):

�Fexc[�] = −
∫ 1

0
d�

∫
dr �(r)c1(r; [��]). [14]

Here, ��(r) = ��(r) is a sequence of density profiles that
are linearly parametrized by � in the range 0 ≤ � ≤ 1. The
limits are �0(r) = 0 such that Fexc[0] = 0, and �1(r) = �(r),
which is the target density profile that appears as the functional
argument on the left-hand side of Eq. 14. Other parametrizations
of ��(r) are conceivable but change the concrete form of
Eq. 14. On the basis of c?1(x; [�]), we implement Eq. 14
via �F ?

exc[�] = −A
∫ 1

0 d�
∫

dx �(x)c?1(x; [��]) and evaluate the
integrals numerically; as before, A denotes the lateral system area.

We first return to bulk systems and illustrate in the following
three different routes toward obtaining the bulk equation of
state from the neural network. For this, we introduce the excess
free energy density as  b(�b) = Fexc[�b]/V . From the neural
functional, the excess free energy density  ?

b (�b) can be acquired
via F ?

exc[�b] from functional line integration along a path of bulk
densities according to Eq. 14. Alternatively and equivalently,
one can simply evaluate the neural direct correlation functional
at bulk density �b and due to translational symmetry at arbitrary
location (e.g., x = 0) such that cb?1 = c?1(0; [�b]). Simplifying
Eq. 2 in bulk reveals that

 ?′
b (�b) = −kBTcb?1 , [15]

where the prime denotes the derivative with respect to the bulk
density argument. The excess free energy density  ?

b (�b) follows

6 of 12 https://doi.org/10.1073/pnas.2312484120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 3
7.

4.
22

8.
25

0 
on

 D
ec

em
be

r 
11

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
37

.4
.2

28
.2

50
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2312484120#supplementary-materials


A

B

Fig. 4. We show (A) the equation of state P(�b) obtained via different
methods and (B) deviations to the Carnahan–Starling result PCS(�b) (dotted
black line). The neural equation of state P?(�b) is calculated via Eq. 16 in
which the excess free energy density follows from functional line integration
according to Eq. 14 (solid purple line), from evaluation of the bulk value
cb?
1 (pink dots), see Eq. 15, and via the low-wavelength limit of c̃b?

2 (k) (blue
crosses), see Eq. 17. For comparison, the Percus–Yevick equations of state
according to the virial (dashed gray line) and compressibility (dashed brown
line) route are shown. Bulk densities �b beyond the stable fluid phase
are shaded in gray. All three routes coincide very well up to and within
the metastable region, with functional line integration leading to the most
accurate results. We additionally depict a simulation-based equation of state
(B, dotted red line) due to Kolafa et al. (50), which our neural functional is
able to reproduce very accurately in the stable fluid region, hence exceeding
in precision the Carnahan–Starling equation of state.

from ordinary numerical integration across bulk densities up to
the target value �b. The numerical accuracy to which both routes
coincide serves as a further valuable consistency test.

Additionally, one obtains the bulk pressure P(�b) from the
excess free energy density via

P(�b) =
(
 ′b(�b) + kBT

)
�b −  b(�b). [16]

The pressure is equally accessible from a further route which
incorporates previous results for the bulk pair structure via their
low-wavelength limits according to ref. (4):

�
∂P
∂�b

∣∣∣∣
T

=
�

�b�T
=

1
S(0)

=
1

1 + �bh̃(0)
= 1− �b c̃b2(0),

[17]
where one can identify the isothermal compressibility �T =
�−1
b (∂�b/∂P)T . From Eq. 17, P(�b) is obtained by evaluation of

either of the bulk correlation functions (Section B.1) in Fourier
space at k = 0 for different bulk densities and by subsequent
numerical integration toward the target value of �b.

We compare the results in Fig. 4, where the equation of
state P?(�b) of the neural network was acquired from functional
line integration across bulk systems, cf. Eq. 14, from evaluation
of one-body bulk correlation values cb?1 , cf. Eq. 15, and from
the low-wavelength limit of two-body bulk correlations, cf.
Eq. 17. One finds that the results of all three routes are
consistent with each other and that they match very well the
Carnahan–Starling equation of state (51), thus outperforming
the Percus–Yevick theory as already observed for the bulk pair
structure in Section B.1. A slight deviation can be noticed
when evaluating P?(�b) via Eq. 17, which constitutes the

most indirect route detouring to two-body correlations. This
may reflect the small discrepancy of the neural functional to
simulation results (cf. Fig. 2) and the sensitivity of the low-
wavelength limit of the static structure factor to remaining finite
size effects (52). Notably, functional line integration is the most
reliable method, and the corresponding results even surpass the
Carnahan–Starling equation of state in accuracy. Fig. 4B shows
the reproduction of a highly accurate simulation-based equation
of state due to Kolafa et al. (50). We recall again that neither
bulk information nor data for free energies or pressures was
given explicitly in the training of the neural network. Instead,
the beyond-Carnahan–Starling precision is achieved solely by
extracting direct one-body correlations from simulation data of
randomized inhomogeneous systems in planar geometry. In SI
Appendix, we additionally demonstrate that the neural functional
is fit for the application of dimensional crossover (53) in order to
obtain the bulk equation of state for the two-dimensional hard
disk fluid within a reasonable range of packing fractions.

For a concise comparison of free energies in inhomogeneous
situations, additional reference data have to be acquired from
simulations. In our grand canonical setting, thermodynamic
integration (54) with respect to the chemical potential can be
used to measure the grand potential according to

Ω[�] = −
∫ �

−∞

d�′ 〈N 〉. [18]

Here, the integration starts from an empty system withΩ[0] =
0 and traverses the chemical potential up to the target value �.
One needs to measure the mean number of particles 〈N 〉 in
a sufficient number of simulations with intermediate chemical
potentials −∞ < �′ ≤ � to evaluate Eq. 18 numerically. The
excess free energy then follows directly from

Fexc[�] = Ω[�]− Fid[�]−
∫

dr �(r)(Vext(r)− �), [19]

where Fid[�] = kBT
∫

dr �(r)(ln �(r) − 1) is the ideal gas free
energy. Thermodynamic integration according to Eq. 18 has
been performed for 22 systems of the test set to yield reference
values F sim

exc for the excess free energy via Eq. 19. The systems were
selected to cover a broad range of excess free energy values, and
FMT results for Fexc were used as a further theoretical estimate
for this selection.

In Table 1 and Fig. 5, we show errors of Fexc to the quasi-exact
simulation values when calculating the excess free energy via
Rosenfeld and White Bear MkII FMT as well as from functional

Table 1. The absolute and relativemean average error
of the excess free energy Fexc as obtained via the Rosen-
feld andWhiteBearMkII FMT functionals is compared to
the result from functional line integration of the neural
correlation functional

�〈|Fexc − F sim
exc |〉 〈|Fexc − F sim

exc |/F sim
exc 〉

Rosenfeld 0.540 1.75%
White Bear MkII 0.0159 0.104%
Neural functional 0.0127 0.097%

The reference values Fsim
exc were obtained via thermodynamic integration according to

Eqs. 18 and 19 for a subset of the test systems. The results of the neural functional
surpass the Rosenfeld FMT significantly and even yield a slight improvement over the
highly accurate White Bear MkII theory. The angular brackets denote an average over the
22 test simulations.
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Fig. 5. We compare free energies of inhomogeneous test systems as
obtained via Rosenfeld (turquoise squares) and White Bear (purple triangles)
FMT as well as with functional line integration of the neural correlation
functional c?1(x; [�]) (yellow circles). The discrepancy Fexc − Fsim

exc of the
respective method to the simulation result Fsim

exc is shown. Rosenfeld FMT
systematically underestimates Fexc, whereas White Bear MkII FMT as well as
our neural functional yield almost exact results. The neural network performs
slightly better for large excess free energies as occur primarily in dense
systems.

line integration according to Eq. 14 of the neural functional.
For both FMT methods, a DFT minimization (cf. Section C.1)
is performed to yield a self-consistent density profile �(x),
which serves as input to the respective analytic FMT expression
for Fexc[�]. Hence, we compare consistently equilibrium states
(according to the respective theory) corresponding to the same
form of the external potential.

The comparison reveals that the neural functional significantly
outperforms Rosenfeld FMT and still yields slightly more accu-
rate values for the excess free energy than the very reliable White
Bear theory. Regarding the above-described bulk results for the
free energy, this behavior is both consistent and expected, as the
Rosenfeld and White Bear MkII functionals can be associated
with the Percus–Yevick compressibility and Carnahan–Starling
bulk equations of state respectively. Still, the test in inhomoge-
neous systems is a more rigorous one than in bulk, as the full
nonlocal functional representation is invoked when providing
c?1(x; [�]) with an inhomogeneous density profile as input. Given
that the functional line integration of c?1(x; [�]) via Eq. 14 is
practically immediate, one can deemF ?

exc[�] itself a corresponding
neural functional for the excess free energy that enables a full
description of the thermodynamics of inhomogeneous fluids to
high accuracy. As we present below, this quantitative precision
is preserved when applying the neural functional in a predictive
manner in the self-consistent calculation of density profiles.

C. Predicting Inhomogeneous Fluids via Neural DFT.
C.1. Going beyond analytic approximations. In the previous sec-
tion, the trained model has been put to test by deriving related
quantities such as c?2(x, x

′; [�]) from autodifferentiation and
F ?

exc[�] from functional line integration in order to assess its
performance against analytic and numerical reference results. We
now turn to the application of the neural functional c?1(x; [�]) in
the context of the self-consistent determination of density profiles
according to the DFT Euler–Lagrange equation. This is achieved
by rearranging Eq. 1 to the standard form (2, 4)

�(r) = exp (−�(Vext(r)− �) + c1(r; [�])) . [20]

A fixed-point (Picard) iteration with mixing parameter � can
be used to determine the density profile from Eq. 20 according to

�(r)← (1− �)�(r)
+ � exp (−�(Vext(r)− �) + c1(r; [�])) .

[21]

The degree of convergence is determined from the remaining
difference of right- and left-hand side of Eq. 20. With the trained
neural functional at hand, one can evaluate the one-body direct
correlation function in Eq. 21 via the surrogate c?1(x; [�]) in each
iteration step. In the following, the use of c?1(x; [�]) in this context
will be referred to as neural DFT.

We note two minor technical points concerning the use of the
neural functional in the Picard iteration. It was observed that a
conservative choice of � is necessary during the first few iterations
to ensure numerical stability. After this burn-in, the mixing
parameter can be set to usual values (e.g.� = 0.05). Furthermore,
the convergence criterion has to be relaxed as compared to typical
choices in analytic DFT methods due to the remaining intrinsic
uncertainty of c?1(x; [�]). The mean average error after training,
cf. Section A.4, provides an estimate for the expected relative
uncertainty of the density profile according to Eq. 20. Depending
on the specific problem, the error might not decrease any further
than that during the iteration of Eq. 21. Neither of these points
caused any practical hindrance in applications.

The treatment of Eq. 20 in neural DFT is conceptually not
different from that in standard DFT methods. However, the
model c?1(x; [�]) relieves the theory from being restricted by
the available approximations for the one-body direct correlation
function as generated from analytic expressions of the excess free
energy functional Fexc[�] via Eq. 2. We emphasize that, unlike
in previous work (35, 37), no analytic ansatz had to be provided
and that our method is generic for the determination of a
suitable functional from a given model Hamiltonian, thus indeed
constituting a “machine learning black box” (35) regarding the
training procedure. However, in contrast to a closed black box,
the inner workings of the resulting neural correlation functional
can be inspected very thoroughly via the neural functional
calculus laid out above. Also note that, while the model works
at the level of the one-body direct correlation function, the free
energy is readily available from functional line integration, cf.
Section B.3. Last, we point out that c?1(x; [�]) captures the entirety
of the intrinsic correlations and that further improvements are
conceivable by only learning differences to an analytic reference
functional. To demonstrate the capabilities of our method, we
refrain from this route and show that the trained neural functional
alone already exceeds the accuracy of FMT.
C.2. Comparison to FMT. In the following, we benchmark the
self-consistent inhomogeneous density profiles obtained via
neural DFT against FMT results. For this comparison, the
Rosenfeld (8) and White Bear MkII (13) FMT functionals
are considered and the simulated density profiles are taken
as quasi-exact reference data. The FMT functionals are the
most profound analytic description of the hard sphere fluid
with the White Bear MkII theory being the state-of-the-art
treatment of short-ranged intermolecular repulsion in classical
DFT. Nevertheless, measurable and systematic deficiencies still
remain, e.g., in highly correlated systems (55). We point the
reader to ref. 14 for a thorough account of FMT and to ref. 56
for a very recent quantitative assessment. Note that the tensorial
weights of Tarazona (15) to describe hard sphere freezing are not
included in our investigation.

The comparison is set up as follows. For each hard sphere
system of the test set (Section A.4), we determine the density
profile �(x) from the Rosenfeld and White Bear MkII FMT
functionals as well as from c?1(x; [�]) via the Picard iteration
Eq. 21 of the Euler–Lagrange Eq. 20. For this, only the known
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form of the external potential Vext(x) and the value � of the
chemical potential are prescribed. As reference density profiles
are available from GCMC simulations, we can evaluate the error
Δ�(x) of each of the DFT results relative to the simulation data
for �(x). From here, different scalar metrics for the quantitative
agreement of self-consistent DFT profiles and simulation results
are considered.

In Fig. 6, both global and local error measures for the deviation
of FMT as well as neural DFT to simulation data are depicted. For
the assessment of the global error, we show the L2-norm ‖Δ�‖2
of the discrepancy to the reference profile, which is normalized
by the mean density �̄ of each system respectively. As the test data
cover very dilute to very dense systems, this relative global error
measure is plotted as a function of �̄ to discern the behavior
with respect to varying global average density. Similarly, we
define an estimate for the relative local error by evaluating the
maximum norm ‖Δ�‖∞ of the density deviation divided by
the maximum value ‖�‖∞ of the GCMC density profile. This
quantity is resolved against the maximum ‖�‖∞ of the respective

A

B

Fig. 6. Measures of discrepancy of self-consistent density profiles to simu-
lation results across the test set are presented. We show (A) the normalized
L2-norm ‖Δ�‖2/�̄ as a function of the mean density �̄ for judgment of the
average error over the inhomogeneous system, and (B) the relative maximum
norm ‖Δ�‖∞/‖�‖∞ as a function of the largest local density ‖�‖∞ to reveal the
magnitude of local errors, e.g. at density peaks. The self-consistent density
profiles are obtained from Rosenfeld (turquoise squares) and White Bear MkII
(purple triangles) FMT (8, 13) as well as from employing our neural functional
c?1(x; [�]) in the DFT Euler–Lagrange equation (yellow circles). Regarding both
global and local error, the neural network outperforms the analytic FMT
functionals and reduces the respective errors up to an order of magnitude,
especially in large-density regimes.

inhomogeneous density, thus enabling the detection of local
discrepancies, e.g., in the vicinity of maxima and discontinuities
of the density profile.

One recognizes that neural DFT yields substantially better
results than the FMT functionals with regard to both error
measures. Compared to the Rosenfeld results, both the global
and the local errors are decreased by approximately an order of
magnitude. Surprisingly, even the White-Bear MkII functional
is not able to match the accuracy of the neural DFT, which is
noticeable especially for large values of �̄ and of ‖�‖∞.
C.3. Simulation beyond the box. A particular advantage of the
local nature of the neural functional c?1(x; [�]) is its applicability
to systems of virtually arbitrary size. As explained in Section A.3,
it is sufficient to provide the density profile within a rather narrow
window as input to the neural network to infer the value of the
one-body direct correlation function at the center of the density
section. The model c?1(x; [�]) can therefore be used directly in the
Euler–Lagrange Eq. 20 for the prediction of planar systems of
arbitrary length. Due to the low computational demands of solv-
ing this equation self-consistently, this method is suitable even
in multiscale problems where macroscopic length scales compete
with and are influenced by microscopic correlations and packing
features. Although one could argue that analytic DFT methods
already account for such tasks, importantly the neural functional
c?1(x; [�]) acts as a drop-in replica of the (almost) simulation-like
description of the intrinsic correlations. Therefore, neural DFT
facilitates to fuse simulation data with common DFT methods,
thus providing a means to “simulate beyond the box.”

Simulation beyond the box is demonstrated in Fig. 7, where
the system size has been increased to 1,000� while the numerical
grid size remains unchanged at 0.01�. Our setup implies that
for colloids of, say, size � = 1 μm, we have spatial resolution of
10 nm across the entirety of a system of macroscopic size 1 mm.
We consider both a highly correlated fluid in a rapidly varying
external potential as well as the diffusive sedimentation behavior
(57) in a weak gravitational potential. The former case is realized
by generating a sequence of randomized external potentials via
Eq. 3 which are spatially connected; the chemical potential is
set to zero. Neural DFT yields a highly inhomogeneous density
profile in this system and resolves the microscopic variations
accurately at low computational cost. In the sedimentation
column, a local chemical potential �loc(x) = � − Vext(x) =
(10 − 0.01x/�)kBT is imposed which decreases linearly with
respect to the height x, and the system is bounded from the
bottom (x = 0) and the top (x = 1,000�) by hard walls. The
spatial variation of �loc(x) is chosen small enough to enable
thermal diffusion across the whole sedimentation column and to
yield locally an almost bulk-like behavior except near the upper
and lower hard walls. The method reproduces both the highly
correlated nature of �(x) in the vicinity of the walls as well as its
intermediate behavior within the sedimentation column, which
follows closely the bulk equation of state (Section B.3), as one
would expect within a local density approximation (4). In both
cases, the computational cost for the determination of �(x) with
neural DFT is negligible as compared to analogous many-body
simulations, which are hardly feasible on such length scales.

Discussion
In this work, we have outlined and validated a machine learning
procedure for representing the local functional map from the
density profile to the one-body direct correlation function via
a neural network. The resulting neural functional was shown
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A

B

Fig. 7. Neural DFT is used to obtain the density profile �(x) (blue lines) of the hard sphere fluid (A) in a highly correlated system with randomized external
potential Vext(x) (gray dashed line) and (B) in a sedimentation column of height 1,000� that is bounded by hard walls at the bottom and at the top of the system.
Near-simulation microscopic accuracy is retained at low computational cost by the application of neural DFT in the highly correlated large-scale system. For the
case of sedimentation, strongly oscillating behavior at the lower wall as well as mild adsorption at the top can be resolved. As the spatial variation of the local
chemical potential �loc(x) is negligible, the density profile reproduces the equation of state within the sedimentation column, which is verified by a comparison
to the Carnahan–Starling equation of state (dotted black line).

to be applicable as a powerful surrogate in the description of
inhomogeneous equilibrium fluids. This was demonstrated for
the hard sphere fluid, where we have used GCMC simulations
in randomized inhomogeneous planar environments for the
generation of training, validation, and test data. Density and
one-body direct correlation profiles followed respectively from
direct sampling and from evaluation of Eq. 1.

DFT elevates the role of the one-body direct correlation
function c1(x) to that of an intrinsic functional c1(x; [�])
depending on the density profile �(x) but being independent of
the external potential. We exploited this fact in the construction
of our neural network, which takes as input a local section of the
discretized density profile around a fixed location x and outputs
the value of the one-body direct correlation functional c1(x; [�])
at that specific location. Establishing a pointwise inference of
c1(x; [�]) instead of trying to represent the global functional
mapping of the entire one-body profiles comes with various
advantages, such as independence of the box size, the correct
description of the short-range behavior of c1(x; [�]), and a very
significant improvement of training statistics.

The nonlinear and nonlocal functional relationship was
realized by fully connected hidden layers with smooth activation
functions and a standard supervised training routine was used.
The achieved mean average error over the test set was of the
same order of magnitude as the noise floor of the simulations,
thus being indicative of full representational power of the neural
correlation functional within the considered simulation data.
Whether the quality of the model can be improved further
by performing more extensive sampling to reduce the statistical
noise of the simulation profiles remains to be investigated in the
future. Additionally, active and reinforcement machine learning
techniques could be useful for interleaving the training and
simulation process, thereby guiding the generation of reference
data in order to explore the space of inhomogeneous systems
more efficiently and exhaustively.

The neural functional was put to test by verifying numerous
physical relations in bulk and in inhomogeneous systems.

In particular, it was shown that the two-body direct correlation
functional c2(x, x′; [�]) as well as higher-order correlations are
accessible from the model via automatic differentiation. In bulk,
the pair structure as described by the neural network significantly
outperforms the Percus–Yevick theory and is even able to com-
pete with simulation results (44), although no bulk data was used
during training. In inhomogeneous situations, the conformance
of the neural functional to the thermal Noether sum rules Eqs. 10
and 11 as well as to spatial symmetry requirements holds to high
accuracy. The excess free energy Fexc[�] is readily and efficiently
available via functional line integration of the model according to
Eq.14 and the results agree with those obtained from simulations.
The bulk equation of state can be acquired consistently from
various routes with the results attaining simulation quality (50)
and in particular exceeding the very reliable Carnahan–Starling
equation of state (51) in accuracy. Dimensional crossover is
feasible for the calculation of the bulk equation of state for the
two-dimensional hard disk system.

Arguably the most important consequence of the neural
functional framework is the applicability of c?1(x; [�]) in the
self-consistent calculation of density profiles by solving the
Euler–Lagrange equation (20) of classical DFT. As the one-
body direct correlation function is faithfully represented by the
neural network, one is exempted from having to find analytic
approximations for c1(x; [�]) or for its generating functional
Fexc[�]. Although FMT provides such approximations for the
hard sphere fluid with high precision, we could demonstrate that
our neural functional outperforms both the Rosenfeld (8) as well
as the White Bear MkII (13) functional. For this, Eq. 20 was
solved self-consistently for all 150 randomized local chemical
potentials of the test set to obtain �(x), where c1(x; [�]) was
given either analytically by FMT or evaluated via c?1(x; [�]). The
comparison of the results to the simulated density profiles reveals
that neural DFT yields global and local errors that are up to an
order of magnitude lower than those of FMT.

Furthermore, due to the flexibility that comes with the local
functional mapping, the neural network could be used as a means
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to “simulate beyond the box.” That is, while the training was
based solely on simulation data from systems of manageable size,
the resulting model c?1(x; [�]) is directly applicable for predictions
on much larger length scales. We demonstrated this by imposing
a spatial sequence of randomized external potentials on a length of
1,000�. While the explicit numerical simulation of such a system
is comparatively cumbersome, neural DFT offers a way to achieve
close to simulation-like accuracy at low computational effort.
Furthermore, we have considered a sedimentation column with
a height of 1,000� that is bounded by hard walls. Neural DFT
is capable of both resolving microscopically the adsorption at the
walls as well as efficiently capturing the long-range density decay
with increasing height. The presented fusion of machine learning
and DFT can therefore be another useful technique to make
headway in the multiscale description of soft matter (58–60).

Even though we saw no need for a more sophisticated training
procedure in our investigations, it could be useful to consider
physics-informed machine learning (61) as a technique for
enforcing exact physical relations of the underlying problem
directly during training. Sum rules in bulk or in inhomogeneous
systems, e.g., the thermal Noether identities Eqs. 10 and 11,
might be suitable candidates for this task. Analogous to the
evaluation of derivatives in physics-informed neural networks, we
have shown the necessary quantities to be accessible by automatic
differentiation of the neural functional.

When considering nonequilibrium systems, power functional
theory (PFT) (40, 41) establishes an exact functional many-body
framework which is analogous to that of DFT in equilibrium. A
central ramification of PFT is the existence of a functional map
from the time-dependent one-body density �(r, t) and current
J(r, t) to the internal force profile fint(r, t; [�, J]), which is in
general nonlocal in space and causal in time t. Recent work
by de las Heras et al. (39) demonstrated that machine learning
this kinematic internal force functional yields highly promising
results and overcomes the analytic and conceptual limitations of
dynamical density functional theory. In this regard, our method
can be put into a more general context as it may be viewed as a
mere special case for equilibrium systems where J(r, t) = 0. The
topical problem of accurately describing nonequilibrium many-
body physics is certainly a natural contender for the application
and extension of our neural functional framework, with many
practical questions arising, e.g., concerning the generation of
training data or the choice of neural network architecture.

While much insight could be gained by considering the hard
sphere fluid, the application of our machine learning procedure
is arguably even more useful for particle models that lack
satisfactory analytic density functional approximations. Although
mean-field descriptions account surprisingly well for soft and
attractive contributions (62, 63), e.g., in the Lennard-Jones
fluid, analytic efforts to go beyond this approximation are sparse
(64–66). We demonstrate the generality of our method in SI
Appendix, where we show that the machine learning routine
applies directly to the (truncated) Lennard-Jones interaction
potential in an isothermal supercritical setting. In the future,
providing the temperature as a further input quantity to a
modified neural network is a valuable goal in order to tackle
the full physics of such thermal systems. As a proper treatment of
the arising phase transitions and interfacial phenomena is already
subtle in simulation, the machine learning perspective might
provide further insights. We expect the general method to hold
up even for complex particle models, e.g., containing many-body
interactions (22), provided that sufficiently accurate training data
of sufficient quantity can be generated.

For the treatment of anisotropic particles, the neural network
must be extended to accommodate for the additional orienta-
tional degrees of freedom. Recent advances in molecular DFT
could be helpful in guiding appropriate augmentations of our
method (67, 68). Related to the increased dimensionality due to
anisotropy, the extension of the machine learning procedure from
planar symmetry to more general geometries is worth contem-
plating. Especially for fully inhomogeneous three-dimensional
problems, the amount of required training data seems restrictive
at first. However, we have shown in this work that results
obtained in planar geometry already capture the essence of
internal interactions. Therefore, it may be feasible to base the
machine learning predominantly on data in reduced geometrical
settings and to incorporate remaining nontrivial effects due to
the more general geometry by supplementing only a few selected
higher-dimensional simulations. In particular, we highlight in
this context the promising development of equivariant neural
networks (69–72), which serve as a means of casting underlying
symmetries of a problem directly into the neural network
architecture. Recent applications in the physical domain show
that this method facilitates robust training and generalization
on the basis of much reduced datasets as compared to common
machine learning approaches which do not intrinsically enforce
symmetry (73–75). In our case, exploiting inherent symmetries
of the direct correlation functional via the use of equivariant
neural networks is certainly valuable when further orientational
or spatial degrees of freedom are to be considered.

Last, we point out useful cross-fertilization of machine learning
ideas regarding topical applications in quantum DFT (76). In
particular, the analogous functional mapping to the classical one-
body direct correlation functional c1(r; [�]) is given quantum me-
chanically by the exchange-correlation potential vxc(r; [n]) which
depends functionally on the one-body electron density n(r). Due
to the immediate analogy, obtaining the exchange-correlation
energy functional Exc[n] might be feasible with functional line
integration similar to our treatment of Fexc[�] via Eq. 14, which
here becomes Exc[n] =

∫ 1
0 d�

∫
dr n(r)vxc(r; [n�]) with n�(r) =

�n(r). Albeit lacking the neural functional calculus that we
presented here, Zhou et al. (77) have successfully demonstrated
the machine learning of the functional mapping from the electron
density to local values of the exchange-correlation potential
vxc(r). Specifically, they trained a convolutional neural network
on the basis of three-dimensional quantum chemical simulation
data of small molecules and could obtain accurate predictions
for larger molecules. This success is akin to the multiscale
applicability of our neural correlation functional c?1(r; [�]). In
general, however, most machine learning strategies in quantum
DFT have considered different functional mappings (78–83). In
light of our results for classical systems, we deem the analogous
machine learning of the local functional relationship of vxc(r; [n])
the arguably most promising approach in the development of a
neural quantum DFT with the goal of chemical accuracy and
generic applicability.

Data,Materials, and Software Availability. Code, data sets and models have
been deposited in Zenodo (84)
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