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Abstract
We argue in favour of developing a comprehensive dynamical theory for
rationalizing, predicting, designing, and machine learning nonequilibrium
phenomena that occur in soft matter. To give guidance for navigating the
theoretical and practical challenges that lie ahead, we discuss and exemplify the
limitations of dynamical density functional theory (DDFT). Instead of the implied
adiabatic sequence of equilibrium states that this approach provides as a
makeshift for the true time evolution, we posit that the pending theoretical tasks
lie in developing a systematic understanding of the dynamical functional
relationships that govern the genuine nonequilibrium physics. While static density
functional theory gives a comprehensive account of the equilibrium properties of
many-body systems, we argue that power functional theory is the only present
contender to shed similar insights into nonequilibrium dynamics, including the
recognition and implementation of exact sum rules that result from the Noether
theorem. As a demonstration of the power functional point of view, we consider
an idealized steady sedimentation flow of the three-dimensional Lennard-Jones
fluid and machine-learn the kinematic map from the mean motion to the internal
force field. The trained model is capable of both predicting and designing the
steady state dynamics universally for various target density modulations. This
demonstrates the significant potential of using such techniques in nonequilibrium
many-body physics and overcomes both the conceptual constraints of DDFT as
well as the limited availability of its analytical functional approximations.

Keywords: density functional theory, dynamical density functional theory,
power functional theory, Noether theorem, superadiabatic forces,
Brownian dynamics, statistical mechanics of liquids

(Some figures may appear in colour only in the online journal)

1. Introduction

The coupled dynamics of the microscopic degrees of freedom in typical soft
matter systems generates a wide array of relevant and also often unsolved
nonequilibrium phenomena [1, 2]. One central quantity for the characterization
of self-assembly and structure formation in complex systems is the
microscopically resolved one-body density distribution ρ(r, t), where r indicates
position and t denotes time. The ‘density profile’ ρ(r, t) acts as a central order
parameter both due to its intuitive physical interpretation and clear cut
mathematical definition [3].
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According to the dynamical density functional theory (DDFT), as originally
proposed by Evans in 1979 [4] and put at center stage by Marconi and Tarazona
in 1999 [5], the time evolution of the microscopic density profile is assumed to be
determined by the following partial differential equation:

∂ρ(r, t)
∂t

= γ−1∇· ρ(r, t)∇
( δF[ρ]
δρ(r, t)

+Vext(r, t)
)
. (1)

Here γ is a friction constant, F[ρ] is an intrinsic free energy functional that
depends functionally on the density profile, and the external potential Vext(r, t)
represents interactions of the system with the environment. The system is set into
motion by a temporal variation of Vext(r, t), such as e.g. step-like switching at an
initial time.

The time evolution according to equation (1) conserves the particle number
locally and hence it constitutes dynamics of model B type [6]. In standard
applications one starts with an equilibrium state of the system and then the
dynamics are monitored on the basis of numerical time integration of
equation (1), where the time dependence is induced by the temporal variation of
Vext(r, t). In order to provide reference data and to allow for the generation of
benchmark results to assess the quality of the theory, resorting to many-body
computer simulations is common, with overdamped Brownian dynamics (BD)
being a popular choice. Marconi and Tarazona [5] initially spelled out the
connection of these dynamics with DDFT and [7] describes a modern and stable
adaptive time-stepping BD simulation algorithm. Comparison of DDFT data
with experimental results are more scarce, but notable exceptions include
non-equilibrium sedimentation of colloids [8], the self-diffusion of particles in
complex fluids [9], the bulk dynamics of Brownian hard disks [10], and the flow
profile and drying pattern of dispersion droplets [11].

The DDFT time evolution reaches a stationary state if the gradient on the right
hand side of equation (1) vanishes, i.e. provided that the expression inside of the
parentheses is constant:

δF[ρ]
δρ(r)

+Vext(r) = µ. (2)

Here we have dropped the dependence on time in the notation, as the situation is
now static. The constant µ can be identified with the chemical potential, which in
a grand canonical statistical mechanical setting is the conjugate control parameter
of the mean particle number. Equation (2) is exact in equilibrium, as was shown
by Evans [4]. He proved the equilibrium intrinsic free energy functional F[ρ] to
exist, to be unique, and to form the starting point for a modern equilibrium theory
of spatially inhomogeneous liquids and crystals [12, 13].

In practice one needs to rely on approximations for F[ρ], given a microscopic
fluid model under consideration. Once one has solved equation (2) for given
values of µ and temperature T (the dependence of F[ρ] on T is suppressed in
the notation), then in principle complete knowledge of the thermal system is
available. The value of the density functional F[ρ] is the true intrinsic free energy,
and higher-order correlation functions are determined via higher-order derivatives
of the free energy functional or via test-particle procedures. In particular
two-body correlations functions, such as the bulk pair correlation function g(r) as
well as its generalization to inhomogeneous systems are accessible. These exhibit
defining characteristics of liquids and more general soft matter systems and they
are formally fully contained in the static density functional theory framework.

Together with a number of available reliable approximate free energy
functionals, density functional theory is a powerful theoretical framework that has
been used to elucidate much intricate and complex behaviour in soft matter.
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Recent representative highlights include tracing hydrophobicity to critical
drying at substrates [14–16], resolving three-dimensional structures of
electrolyte aqueous solutions near surfaces [17, 18], and addressing the
magnitude of the decay lengths in electrolytes [19]. Rosenfeld’s celebrated hard
sphere fundamental measure free energy functional [20–23] is at the core of much
of this research activity.

In the following we wish to address whether or not the DDFT has the prowess
to play a similar role in nonequilibrium, as is often at least implicitly assumed.
We demonstrate on the basis of an explicit and generic example, i.e. that of
uniaxial compressional flow of the three-dimensional Lennard-Jones (LJ) fluid,
that the DDFT is fundamentally flawed and that in reality, as represented by
many-body simulations, recognizing the flow field as a further relevant degree of
freedom is required to represent true nonequilibrium. These conclusions are
based on analytical power functional approximations, adaptive BD simulation
data, and explicit machine learning of the power functional map from motion to
the interparticle one-body force field. Neglecting the dependence on the velocity
field, via artificially setting its value identically to zero, reduces to the
machine-learned functional mapping and hence the adiabatic time evolution of
DDFT, albeit here on the basis of the quasi-exact adiabatic forces as they are
included in the supervised machine learning.

This Perspective is organized as follows. We first make some key aspects of
DDFT explicit in section 2 and describe several prominent shortcomings of this
theory. We then give an account of how to go towards the formally exact
one-body dynamics in section 3 and provide in section 4 a description of key
aspects of the power functional framework, which as we wish to argue overcomes
the fundamental defects of DDFT. We describe the exemplary stationary
compressional flow situation in section 5 and lay out the application of Noether’s
theorem in this statistical mechanical setting in section 6. We present machine
learning results for the kinematic functional relationships of the streaming LJ
fluid in section 7. This method also yields direct access to the adiabatic force
field, as is required for the DDFT time evolution, without the need for involving
any prior explicit analytical approximations for the free energy density functional.
We give conclusions and an outlook in section 8. Readers who are primarily
interested in the machine learning aspects of our work (section 7) are welcome
to skip to the appendix where we lay out our strategy of its use in predicting and
designing nonequilibrium many-body dynamics in soft matter.

2. Limits and limitations of adiabatic dynamics

We go into some detail and describe why the DDFT represents adiabatic
dynamics in the sense of a temporal sequence of spatially inhomogeneous
equilibrium states. The equilibrium intrinsic free energy functional splits
into ideal and excess (over ideal gas) contributions according to
F[ρ] = Fid[ρ] +Fexc[ρ]. Here the excess free energy functional Fexc[ρ] accounts
for the effects of the interparticle interactions on the equilibrium properties of the
system and it is in general unknown and requires approximations to be made. The
ideal gas free energy functional however is exactly given by

Fid[ρ] = kBT
ˆ
drρ(r)[ln(ρ(r)Λ3)− 1], (3)

where kB denotes the Boltzmann constant, Λ is the thermal de Broglie
wavelength, and we consider three-dimensional systems. The functional
derivative, as it is relevant for equation (1), is δFid[ρ]/δρ(r) = kBT ln(ρ(r)Λ3).
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When disregarding the excess contribution and inserting this result alone
into the DDFT equation of motion (1), its right hand side becomes
γ−1∇· ρ(r, t)∇[kBT ln(ρ(r, t)Λ3)+Vext(r, t)] with the dependence on Λ being
irrelevant due to the spatial gradient operation. The result can be re-written
further such that for the case of the ideal gas, where Fexc[ρ] = 0 and F[ρ] = Fid[ρ],
the equation of motion (1) attains the following form:

∂ρ(r, t)
∂t

= D0∇2ρ(r, t)−∇ · ρ(r, t)fext(r, t)/γ. (4)

Here D0 = kBT/γ is the diffusion constant, ∇2 is the Laplace operator and the
external force field is given (here) as fext(r, t) =−∇Vext(r, t). Equation (4) is
the exact drift-diffusion equation for overdamped motion of a mutually
noninteracting system, i.e. the ideal gas.

Besides Evans’ original proposal [4] based on the continuity equation and
undoubtedly his physical intuition, derivations of the DDFT (1) were founded
much more recently on Dean’s equation of motion for the density operator [5], the
Smoluchowski equation [24], a stationary action principle for the density [25], the
projection operator formalism [26], a phase-space approach [27], the mean-field
approximation [28], a local equilibrium assumption [29], and a non-equilibrium
free energy [30]. The question of the well-posedness of the DDFT was addressed
[31] and several extensions beyond overdamped BD were formulated, such as
e.g. for dynamics including inertia [32–35] and for particles that experience
hydrodynamic interactions [35, 36] or undergo chemical reactions [37, 38].

The DDFT was also used beyond the description of fluids, such as e.g. for
opinion dynamics [39] and epidemic spreading [40]. Recent reviews of DDFT are
given in [41, 42], with [42] giving an updated overview of several very recent
directions. The theory is put into a wider perspective, together with much
background pedagogical material in [43]. A modern and well-accessible account
of the general strategy of dynamical coarse-graining in statistical physics, of
which the DDFT can be viewed as being a representative, has recently been given
by Schilling [44].

The fact that both the static limit for the fully interacting system (2) as well as
the full dynamics of the noninteracting system (4) are exact, taken together with
the heft of the DDFT literature, appears to give much credibility to the equation
of motion (1). However, despite the range of theoretical techniques employed
[5, 24–30] neither of these approaches has provided us with a concrete way of
going beyond equation (1). Apart from several case-by-case and rather ad hoc
modifications, no systematic or even only practical identification of what is
missing has been formulated. (We turn to power functional theory in section 4.)
This is a problematic situation as two defects of equation (1) are immediately
obvious upon inspection: (i) the description is local in time and there is no natural
mechanism for the inclusion of memory while time-locality is not sufficient for
general nonequilibrium situations; (ii) only flow that leads to direct changes in the
density profile is captured and hence effects of rotational flow, such as shearing,
as well as of nonequilibrium effects in compression and expansion are lost (see
below).

Here we argue that these defects are indicative of a broader failure of
equation (1) to describe nonequilibrium physics. We show that the DDFT is only
fit to describe situations in which the dynamics follow an adiabatic path through a
sequence of equilibrium states. The description of genuine nonequilibrium
dynamics in a functional setting on the one-body level rather requires recognition
of the local velocity field as a further relevant physical variable besides the density
profile, and this is provided by power functional theory [43]. Before laying out
key principles of this approach in section 4, we first describe the microscopically
sharp coarse-graining on the one-body level of correlation functions.
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3. Towards exact one-body dynamics

Evans based his original derivation [4] of equation (1) on the continuity equation,

∂ρ(r, t)
∂t

=−∇ · J(r, t), (5)

where J(r, t) is the microscopically resolved one-body current distribution.
Equation (5) is exact in a variety of contexts, including overdamped BD, as
described either on the Fokker–Planck level by the Smoluchowski equation or by
the corresponding overdamped Langevin equation that governs the trajectories, as
they are realized in simulation work [7]. For BD the one-body current distribution
is given exactly by [43]:

γJ(r, t) =−kBT∇ρ(r, t)+Fint(r, t)+ ρ(r, t)fext(r, t). (6)

This identity expresses the force density balance of the negative friction force
density (left hand side) with the force densities due to ideal thermal diffusion,
interparticle interactions, and external influence (three contributions on the right
hand side). Here the interparticle force density distribution is given by the
statistical average

Fint(r, t) =−
〈∑

i

δ(r− ri)∇i u(rN)
〉∣∣∣

t
, (7)

where the angular brackets indicate an average at fixed time t over the
nonequilibrium many-body distribution, u(rN) is the interparticle interaction
potential that depends on all particle position coordinates rN ≡ r1, . . . ,rN and ∇i

indicates the derivative with respect to the position ri of particle i. The
formulation of equation (7) is based on the concept of static operators and a
dynamically evolving probability distribution. This is analogous to the
Schrödinger picture of quantum mechanics. The Heisenberg picture is more
closely related to simulation work. Here the probability distribution is that of the
initial microstates and the operators move forward in time, i.e. the position ri(t)
of particle i changes over the course of time. Then the Dirac distribution in
equation (7) becomes δ(r− ri(t)), with the generic position variable r however
remaining static. The forces are those that act in the given microstate rN(t) at time
t, i.e. the interparticle force on particle i at time t is −∇i u(rN(t)).

In practice, using BD simulations, carrying out the average in equation (7)
requires to build the mean over sufficiently many separate realizations of the
microscopic evolution of the many-body system that differ in the initial microstate
(as e.g. drawn from an equilibrium ensemble) and in the realization of the thermal
noise. As equation (7) measures both the probability to find particle i at position r
(via the delta function) and the interparticle force that acts via the negative
gradient −∇i u(rN), we refer to Fint(r, t) as a force density. The corresponding
force field fint(r, t) is obtained by simple normalization with the density profile,
i.e. fint(r, t) = Fint(r, t)/ρ(r, t). Building this ratio scales out the probability effect
and the force field then carries physical units of force, i.e. energy per length.

In equilibrium the definition (7) remains intact. Complementing the statistical
average, static density functional theory allows to express the equilibrium force
density as being functionally dependent on the density profile via the functional
derivative of the excess free energy functional according to:

Fint(r)
∣∣
eq
=−ρ(r)∇δFexc[ρ]

δρ(r)
. (8)
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Crucially, and in contrast to equation (7), here the internal force density is directly
expressed as a density functional. This dependence has superseded the original
dependence on the external potential, as is manifest in the probability distribution
for building the average (7) in equilibrium.

As a self-consistency check we insert the force density functional (8) into the
equilibrium limit of the force density balance (6). The current vanishes in the
equilibrium case, J(r, t)≡ 0, and we obtain

−kBT∇ρ(r)+Fint(r)|eq + ρ(r)fext(r) = 0. (9)

This result is independent of time and it constitutes the gradient of
the static Euler–Lagrange equation (2) when divided by the density profile.
(Insert equation (8), identify the ideal gas contribution −kBT∇ρ(r) =
−ρ(r)δFid[ρ]/δρ(r), and divide by ρ(r).) The classical force density balance
result (9) by Yvon, Born and Green [3] has recently been derived from
systematically addressing thermal Noether invariance [45, 46] against locally
resolved spatial deformations of the statistical ensemble [47–49], as also valid
quantum mechanically [49] and at second order in the displacement field [50, 51];
we give a brief account of this theory in section 6 below.

A naive transfer of equation (8) to nonequilibrium lets one simply evaluate the
equilibrium excess free energy functional at the instantaneous nonequilibrium
density ρ(r, t). In order to separate this contribution from true static equilibrium,
we refer to this force density as being adiabatic (subscript ‘ad’) and to be defined
as

Fad(r, t) =−ρ(r, t)∇δFexc[ρ]

δρ(r, t)
. (10)

We recall that the right hand side offers a concrete computational structure that is
of practical usefulness in actual applications, as considerable knowledge about
approximative forms of the excess free energy density functional Fexc[ρ] is
available. Using the adiabatic force density as a proxy for the true nonequilibrium
intrinsic force density distribution (7), i.e. setting Fint(r, t) = Fad(r, t) in the force
density balance (6) together with the continuity equation (5) leads to the DDFT
equation of motion (1). The adiabatic force density approximation is uncontrolled
though and the theory inherently yields the dynamics as an adiabatic sequence of
equilibrium states. Surely, more than 40 years after the conception of the DDFT
[4], we have to be able to do better!

4. Power functional techniques

Power functional theory [43] offers a concrete mathematical structure to go
forward. We describe the essential steps that enable one to go beyond the DDFT
and to hence address a significantly expanded realm of nonequilibrium physics
which equation (1) is oblivious of.

The interparticle force density profile (7) is identified to consist of two
contributions according to:

Fint(r, t) = Fad(r, t)+Fsup(r, t). (11)

Here Fad(r, t) is the adiabatic force density profile, as given formally via the
explicit equilibrium free energy derivative (10) and directly accessible in
simulations via the custom flow method [52, 53]. The custom flow algorithm
allows to systematically construct a hypothetical adiabatic (equilibrium) system
that shares its density profile with the nonequilibrium system at the given time.

6
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Then sampling the internal force density in the adiabatic system yields results for
Fad(r, t).

The second, superadiabatic contribution in equation (11), Fsup(r, t), contains
all effects that are not expressible as an instantaneous density functional. This
includes forces that lead to viscous and to nonequilibrium structure forming
phenomena, as we exemplify below in a concrete model compressional flow
situation. Formally, the superadiabatic force density is generated from the
superadiabatic excess free power functional Pexc

t [ρ,J] upon functional
differentiation with respect to the one-body current via [43, 54]:

Fsup(r, t) =−ρ(r, t)
δPexc

t [ρ,J]
δJ(r, t)

. (12)

The functional dependence of Pexc
t [ρ,J] on the density and current is causal,

i.e. on the values of these fields at prior times to t; density and current need to
satisfy the continuity equation. Upon using equation (11) the force density
balance (6) attains the following form:

γJ(r, t) =−kBT∇ρ(r, t)+Fad(r, t)
+Fsup(r, t)+ ρ(r, t)fext(r, t). (13)

This relationship holds beyond gradient forms of fext(r, t), i.e. for external force
fields that contain non-conservative contributions. Crucially, Fsup(r, t) will in
general also acquire nonconservative contributions, such as e.g. damping effects
that represent viscous behaviour. Moreover, nonequilibrium structure-forming
effects will also arise in general. These affect directly the shape of the density
profile, whether this evolves in time or persists in a nonequilibrium steady state.

If one wishes to eliminate the explicit occurrence of the current from the
dynamics, then inputting the force density balance (13) into the continuity
equation (5) leads to the following formally exact form of the equation of motion
for the density profile:

∂ρ(r, t)
∂t

= D0∇2ρ(r, t)+∇· ρ(r, t)
γ

∇δFexc[ρ]

δρ(r, t)

−∇ · ρ(r, t)
γ

[fsup(r, t)+ fext(r, t)]. (14)

Here it is apparent that the superadiabatic force field fsup(r, t) = Fsup(r, t)/ρ(r, t)
has a direct effect on the system dynamics. The effect is similar to that of the
external force field. Crucially though, both force fields are independent of each
other: the external force field represents a prescribed and inert influence on the
system. In contrast, the superadiabatic force field is an emergent phenomenon that
arises due to interparticle interactions and, from the functional point of view,
depends non-locally in position and causally in time on the one-body density and
on the current profile.

Although setting fsup(r, t) = 0 yields the DDFT (1), the superadiabatic force
field fsup(r, t) was demonstrated to exist [55–61] and in general to play a major
role in the dynamics on the one-body level and, based on test-particle concepts
[62–67], two-body correlation functions [68–70], and for active matter [71–75].
Both the flow properties as well as the spatial structure formation in the system
are affected.

To reveal additional physics, it is useful to split into ‘structural’ and ‘flow’
contributions. This was established e.g. for complex flow patterns that occur in
driven BD [56, 60], for active Brownian particles which form a self-sustained
interface at motility-induced phase coexistence [71–75], as well as very recently

7
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for a sheared three-body colloidal gel former [61]. Before we demonstrate these
concepts for an example of steady nonequilibrium below, we first describe two
simple model power functionals that respectively generate structure and
viscously dampen the motion and that, as we will see, give a good account of the
nonequilibrium flow considered below.

We concentrate on the low-order terms that are relevant for compressional/
extensional flow, i.e. for situations where ∇· v(r, t) ̸= 0. We focus on cases where
there is no rotational motion (such as shearing) and hence ∇× v(r, t) = 0. The
velocity gradient superadiabatic power functional consists of a sum,

Pexc
t [ρ,v] = Pflow

t [ρ,v] +Pstr
t [ρ,v]. (15)

Here the flow and structural [56, 60] contributions are approximated, respectively,
by the following time-local (Markovian) and space-semilocal (i.e. involving ∇)
forms

Pflow
t [ρ,v] =

η

2

ˆ
dr[ρ(r, t)∇· v(r, t)]2, (16)

Pstr
t [ρ,v] =−χ

3

ˆ
dr[ρ(r, t)∇· v(r, t)]3, (17)

where the overall prefactors η and χ control the respective magnitude and they
play the role of transport coefficients (see below). The flow functional (16) is
quadratic both in density and in the velocity field; the structural functional (17) is
of cubic order in each of these variables. Explicit higher-order functionals exist
[60] and they become relevant when driving the system strongly. We will return to
the consequences of equations (16) and (17) after laying out in section 5 the
actual flow situation that we use as a model to exemplify the implications for the
physics. Before doing so, we briefly describe several further key aspects of the
power functional framework.

Power functional theory provides a formal mechanism for the inclusion of
time- and space-nonlocal dynamics [57, 69, 80]. While equation (12) applies to
overdamped dynamics, the acceleration field becomes a further relevant degree of
freedom if inertia are relevant [79–82] whether classically in molecular dynamics
[79, 80] or in quantum dynamics [81, 82]. Here the memory functions act as
convolution kernels on specific kinematic fields and rotational and compressional
contributions to the dynamics are genuinely built in. As laid out above, the
framework is based on an exact variational concept [43, 54], and the resulting
functional mapping was shown to be explicitly accessible in many-body
simulation via the custom flow computer simulation method [52, 53].

Even simple mathematical model forms for the nonequilibrium contribution to
the power functional, such as equations (16) and (17), already capture essential
physics (as we demonstrate below) and dynamical two-body correlation functions
are accessible via test particle dynamics [9, 10, 62–70]. The power functional is
thereby not to be confused with the often vague concept of a ‘nonequilibrium free
energy’. The proper equilibrium free energy functional does play a central role in
power functional theory though, via providing the description of the adiabatic
reference state [43], see the generation of the force density distribution via
functional differentiation (10), as is relevant for the interparticle force
splitting (11), and the full density equation of motion (14).

The relevance of superadiabatic contributions to the dynamics, i.e. of those
effects that lie beyond equation (1), has been amply demonstrated in the literature
[55–60, 68–70]. Both adiabatic and superadiabatic effects arise from integrating
out the dynamical degrees of freedom of the many-body problem.

8
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Ensemble differences between canonical dynamics and grand canonical
equilibrium have been systematically addressed [76–78] and these do not account
for the observed differences between adiabatic and superadiabatic dynamics. The
kinematic dependence on the motion of the system arises formally [43], it can be
explicitly traced in many-body computer simulation work [60], and it is amenable
to machine learning, as we demonstrate in section 7. Before doing so, we first
formulate the representative flow problem that we will use to apply the above
concepts.

5. Nonequilibrium steady states

We restrict ourselves to flow situations with one-body fields that are
inhomogeneous in position but independent of time, i.e. ρ(r) and v(r). Then
trivially ∂ρ(r)/∂t= 0 and the continuity equation (5) constrains both fields to
satisfy ∇· [ρ(r)v(r)] = 0. As a representative case we illustrate in figure 1(a)
nonequilibrium steady state of a three-dimensional liquid undergoing
unidirectional compressional flow. Flow along a single given direction occurs
e.g. under the influence of gravity, where sedimentation of colloids leads to both
compression in the lower parts of the sample and expansion in the upper parts of
the sample. Here we disregard transient phenomena and investigate an idealized
periodic system, where flowing steady states can form.

This chosen uniaxial flow in planar geometry is complimentary to DDFT, as
density gradients are relevant and the density profile alone already contains much
non-trivial information about the dynamics that the system undergoes. Hence this
specific geometry is often used to carry out generic tests; see e.g. the investigation
of the quality of force-based DDFT [47, 48]. In contrast, shear flow is very
different, as any motion that occurs perpendicular to the density gradient is not
captured by equation (1); we refer the reader to [41, 42] for a description of
efforts to include these effects within DDFT via different types of modifications
of equation (1).

In order to elucidate the physics in the chosen uniaxial compressional setups,
we follow the splitting (15) of the superadiabatic power functional into structural
and flow contributions and hence decompose the superadiabatic force field
accordingly as

fsup(r) = fstr(r)+ fflow(r), (18)

where the right hand side consists of the nonequilibrium structural force field
fstr(r) and the flow force field fflow(r). Both of these force contributions arise
from the microscopic interparticle interactions, as coarse-grained in a
microscopically sharp way to the one-body level. We lay out in the following the
benefits of the structure-flow splitting (18) and its definition via flow reversal
symmetry.

First, on the more practical level, equation (18) allows to carry out a
corresponding splitting of the force density balance (13) (we divide by ρ(r) to
obtain force fields). The result is a set of two coupled equations of motion, with
one of them depending explicitly on the velocity profile and the second one
depending explicitly on the density profile:

γv(r) = fflow(r)+ fext,f(r), (19)

0= fstr(r)− kBT∇ lnρ(r)+ fad(r)+ fext,s(r). (20)

Building the sum of equations (19) and (20) and multiplying by the density
profile restores the full force density balance (13). The external force field is split
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Figure 1. Illustration of unidirectional compressional flow of a liquid. The three-dimensional
system is set into motion (red arrows) by the action of an external force profile fext(x) (blue arrows)
which acts along the x-axis. The system retains planar geometry such that spatial inhomogeneities
only occur as a function of x. The density profile ρ(x) (orange curve) and the velocity profile v(x)
(red curve) are both stationary in time but inhomogeneous in position. The local one-body current
J(x) = ρ(x)v(x) = const and as a result the system is in a nonequilibrium steady state. The
corresponding adiabatic system is in equilibrium (it has no mean flow) and it has by construction an
unchanged density profile ρ(x). In the adiabatic system the spatial variation of ρ(x) is stabilized by
the action of an external force field −∇Vad(x) (olive arrows), which acts solely in the adiabatic
system.

according to fext(r) = fext,f(r)+ fext,s(r), where the two terms couple to the flow
via fext,f(r) in equation (19) and to the structure via fext,s(r) in equation (20).

On the superficial level the two equations (19) and (20) appear to be
independent of each other, as no single field appears explicitly in both equations.
However, the two equations are indeed intimately coupled to each other by the
interparticle interactions, as represented by both the adiabatic and the two
superadiabatic (flow and structural) force fields. These three intrinsic force
contributions provide the physical representation of the true nonequilibrium
steady state dynamics.

The flow-structure splitting (18) is uniquely determined by the symmetry
properties of the forces upon motion reversal of the system [60]. Motion reversal
is a discrete symmetry operation, and hence different from continuous invariances
where Noether’s theorem applies [45–51]. One considers a ‘reversed’ system,
which is also in steady state and possesses an unchanged density profile ρ(r). The
flow, however, is directed against the velocity orientation in the original ‘forward’
system. Hence the velocity profile in the reversed system is simply −v(r). As a
result the current also acquires a minus sign, −ρ(r)v(r), which however does not
affect the (vanishing) divergence, ∇· [−ρ(r)v(r)] = 0. Thus the reversed state
indeed is stationary. The two superadiabatic contributions are then defined
to be unchanged [fstr(r)] and inverted [−fflow(r)] in the reversed system.
Consequentially, the superadiabatic force field in the reversed system is the
difference fstr(r)− fflow(r).

Analyzing the symmetry properties of the adiabatic force field is
straightforward. We recall that fad(r) is a density functional via equation (10).
The density profiles in the forward and in the reversed systems are identical
though. Hence fad(r) is invariant under motion reversal. Motion reversal is a
useful device in order to (i) rationalize the nonequilibrium behaviour according to
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the split force balance (19) and (20), and to (ii) classify the dependence of
superadiabatic forces on the velocity field into even powers, which constitute
fstr(r), and odd powers, which form fflow(r).

We can demonstrate this mechanism explicitly on the basis of the above flow
and structural power functionals (16) and (17). Superadiabatic force fields are
generated via the functional derivative (12) with respect to the current or,
analogously, by functionally deriving by v(r, t) and dividing the result by ρ(r, t).
The resulting superadiabatic one-body force field consists of two components.
The viscous flow force and [56, 59] and the structural force follow respectively as

fflow(r) =
η

ρ(r)
∇[ρ(r)2∇· v(r)], (21)

fstr(r) =− χ

ρ(r)
∇{ρ(r)3[∇· v(r)]2}, (22)

where equation (21) is odd (linear) and equation (22) is even (quadratic) in the
derivatives of the velocity field, as desired and we re-iterate that both expressions
are only valid for small enough velocity gradients.

One might wonder where all this genuine nonequilibrium physics leaves the
DDFT! Some readers will find the instantaneous dynamics, as generated from an
adiabatic free energy according to (1), to be more appealing and intuitive than
the thinking in terms of the above described apparently intricate functional
relationships. Why not live with equation (1), use it, and simply accept its
defects? In order to address this question and to demonstrate why this path is
severely restricted from the outset, we turn in section 7 to an explicit
demonstration of the functional relationship that governs the nonequilibrium
physics, i.e. the kinematic functional map from the one-body mean motion to the
internal force field. Before doing so, we demonstrate that Noether’s theorem of
invariant variations has much to say about our present setup.

6. Noether force sum rules

We discuss one of the arguably simplest cases of exploitation of the inherent
symmetries of a thermal many-body system, that of global translational invariance
of its statistical mechanics [45, 46]. We consider a ‘shifting’ transformation,
where all particle coordinates change according to the map ri → ri + ϵ, where
ϵ= const. This uniform shifting operation leaves all interparticle distance
unchanged, ri− rj → (ri+ ϵ)− (rj+ ϵ)≡ ri− rj. As a consequence the
interparticle potential is invariant under the transformation, which we can express
as the identity u(r1, . . . ,rN) = u(r1 + ϵ, . . . ,rN+ ϵ). Here equality holds
irrespectively of the magnitude and the direction of the shifting vector ϵ.

The Noether argument proceeds with a twist. Despite the absence of
dependence on ϵ, we can nevertheless differentiate both sides of the equation
with respect to ϵ and the result will be a valid identity. We obtain
0= ∂u(ri+ ϵ, . . . ,rN+ ϵ)/∂ϵ=

∑
i ∇i u(r1, . . . ,rN), where we have set ϵ= 0

after taking the derivative. We multiply by −1 and insert 1=
´
drδ(r− ri), which

yields

−
ˆ
dr

∑
i

δ(r− ri)∇i u(rN) = 0. (23)

The expression on the left hand side allows to identify the locally resolved
interparticle force operator F̂int(r) =−

∑
i δ(r− ri)∇i u(rN), such that

equation (23) attains the form
´
drF̂int(r) = 0. This identity holds for each

microstate rN and hence it remains trivially valid upon averaging over the
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many-body distribution function, irrespective of whether this is in- or
out-of-equilibrium. We can hence conclude the vanishing of the global
interparticle force, expressed as the integral over the mean force density
Fint(r) = ⟨F̂int(r)⟩ as

ˆ
drFint(r, t) = 0. (24)

Equation (24) holds at all times t and it can be viewed as a consequence of
Newton’s third law, see the discussion in [45]. Using the adiabatic-superadiabatic
force splitting (11) one can further conclude that the both global contributions
need to vanish individually,

ˆ
drFad(r, t) = 0, (25)

ˆ
drFsup(r, t) = 0. (26)

The proof can either be based on the fact that equation (25) is merely
equation (24) for the special case of an equilibrium system, from which then
equation (26) follows from the force splitting (11). Alternatively and starting
from a very fundamental point of view, the global translational invariance of the
excess free energy functional Fexc[ρ] and of the superadiabatic free power
functional Pexc

t [ρ,v], here considered instantaneously at time t, lead directly
to equations (25) and (26), see [45, 46] for detailed derivations.

It is interesting to apply the Noether concept to the flow-structure splitting
equation (18) of the superadiabatic force field. One can see straightforwardly,
from the symmetry upon motion reversal, that both the global structural force and
the global flow force need to vanish individually:

ˆ
drρ(r)fflow(r) = 0, (27)

ˆ
drρ(r)fstr(r) = 0. (28)

We prove by contradiction and assume that it is not the case, i.e. that each integral
gives the same global force, but with opposite sign, such that the sum vanishes
and equation (26) remains valid. Per construction, fflow(r) changes sign in the
motion reversed system, but fstr(r) does not. Hence equation (26) can only be
satisfied in the motion-reversed system provided that both the flow and structural
contribution vanish separately.

We can explicitly test the validity of the sum rules (27) and (28) for the above
analytical force approximations (21) and (22). The respective integrals are
η
´
dr∇[ρ(r)2∇· v(r)] = 0 and χ

´
dr∇{ρ(r)3[∇· v(r)]2}= 0, which follows

from the divergence theorem, as boundary terms vanish. Hence the simple
non-local velocity gradient power functional approximations (16) and (17) have
passed the global Noether validation test. This is nontrivial, as the proof rests on
the specific structure of the integrands being gradients, which for more general
analytical forms will not be the case. This exemplifies the merits of Noether sum
rules for assessing and by extension also constructing theoretical nonequilibrium
force approximations.

The Noether concept carries much further. Hermann and Schmidt [45] present
a generalization of the global sum rules, such as the vanishing of the total
superadiabatic force (26), for so-called time direct correlation functions. These

12



J. Phys.: Condens. Matter 35 (2023) 271501 Perspective

are defined via functional derivatives of the superadiabatic power functional, in
generalization of the superadiabatic force density as generated via the
derivative (12) with respect to the current distribution. We have shown [45] that
these time direct correlation functions satisfy additional memory sum rules and
we expect the corresponding identities to be helpful in the study of temporal
nonlocality. Further work was addressed at the variance of global fluctuations,
which were shown to be constrained by Noether invariance at the second order
global level [50]. Noether’s theorem also yields the locally resolved force balance
relationship in quantum mechanical many-body systems [49]. Very recently,
striking two-body force-force and force-gradient correlation functions for the
precise and novel characterization of disordered (liquid and gel) systems [51]
were revealed. Exploiting Noether’s concept in a statistical mechanical setting is
robust against changes of ensemble, [46] presents the transfer of the grand
ensemble formalism [45] to canonical systems. Considering global rotational
invariance leads to (classical) spin–orbit coupling of torque identities [45].

We return to steady states and demonstrate that the seemingly entirely formal
functional relationships do in fact apply to real systems. We present in the
following new computational methodology that we use to demonstrate the
functional point of view. We will also demonstrate that the sum rules (26)
and (27) are highly valuable in providing checks for numerical results.

7. Machine learning the kinematic map

Machine learning proves itself to be an increasingly useful tool in a variety of
settings in soft matter, ranging from soft matter characterization [83], engineering
of colloidal self-assembly [84], to the inverse design of soft materials [85]. Pivotal
studies were addressed at colloidal structure detection [86], the identification of
combinatorial rules in mechanical metamaterials [87], the learning of many-body
interaction potentials for spherical [88] and for anisotropic particles [89], and the
prediction of the dynamics of supercooled liquids from their static properties [90].

Concerning slow dynamics, machine learning was used for obtaining
memory kernels for generalised Langevin dynamics [91], classifying the age [92],
assessing the structural heterogeneity [93], and investigating dimensionality
reduction of local structure [94] of glasses. Machine learning was applied to
equilibrium reactive processes such as molecular isomerization [95] and to the
behaviour of rare diffusive molecular dynamics trajectories [96].

Machine learning plays an important role in the inverse design for
self-assembly of soft materials [97, 98]. Examples thereof include
sequence-specific aggregation of copolymers [99], inverse design of
multicomponent colloidal crystals by reverse engineering the Hamiltonian of the
system [100], characterizing the self-assembly of three-dimensional colloidal
systems [101], controlling colloidal crystals via morphing energy landscapes
[102], and learning free energy landscapes using artificial neural networks [103].

In a liquid state theory-informed approach, Limmer and his coworkers have
considered potentials based on local representations of atomic environments, in
order to learn intermolecular forces at liquid-vapor interfaces [104]. They relate
their machine-learning approach to the local molecular field theory by Weeks and
coworkers [105, 106], see [107] for a description of the relationship of this
approach to DFT.

More specifically, in the context of classical density functional theory, an early
and pioneering study formulated a neural-network approach to liquid crystal
ordering in confinement [108]. Free energy density functionals were obtained for
one-dimensional fluids from a convolutional neural network [109] and an
analytical form of an excess free energy functional was generated from an
equation learning network [110]. Cats et al [111] recently used machine learning
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to improve the standard mean-field approximation of the excess Helmholtz
free-energy functional for a three-dimensional LJ system at a supercritical
temperature. These significant reserach efforts were devoted to tailoring
analytical forms of model free energy functionals, by training certain key
components such as spatial convolution kernels, and much insight into the inner
workings of excess free energy functionals was gained [109–111]. Very recent
developments include using physics-constrained Bayesian inference of state
functions [112] and to emulate functionals by active learning with error control
[113]. The results of DFT calculations were also used as training data for
investigating gas solubility in nanopores [114].

However, here we proceed very differently and moreover do so
out-of-equilibrium. We use the LJ model and the identical planar geometry
as in [111], such that the density profile ρ(x) depends only on a single position
coordinate x. We consider steady states and retain planar symmetry by
considering flow that is directed in the x-direction, such that the current
J(x) = J(x)ex, where J(x) is the magnitude of the current and ex is the unit vector
in the x-direction. Both the density profile ρ(x) and the velocity field
v(x) = J(x)/ρ(x) are independent of time. The continuity equation (5) then
implies 0= ∂ρ(x)/∂t=−∂[v(x)ρ(x)]/∂x, from which one obtains by spatial
integration ρ(x)v(x) = J0 = const. Here the value of J0 determines the intensity of
the flow; we recall the illustration shown in figure 1.

We base the machine learning procedure on a convolutional neural network, as
was done e.g. in [109], and following [109–111] we use many-body computer
simulations to provide training, validation, and test data. In contrast to these
equilibrium studies though, in order to address the nonequilibrium problem we
need to represent the physical time evolution on the many-body trajectory level.
We use the recently developed highly performant adaptive BD algorithm [7] and
apply it to the three-dimensional LJ fluid. As laid out above, in order to address
situations of planar symmetry we drive the system only along the ex-direction.
The specific form of the driving force field fext(x)ex is however irrelevant, as the
training data only serves to extract the intrinsic kinematic functional relationship.

In order to cover a sufficiently broad range of flow situations,
we represent the external force field as a truncated Fourier series
fext(x) =

∑nmax
n=0An sin(2πnx/L+Bn), where L is the size of the cubic simulation

box with periodic boundary conditions, An are random amplitudes with zero mean
and uniform distribution inside of a given finite interval, and Bn are random
phases. We truncate at order nmax = 4 such that the length scale L/(2πnmax) is
comparable to the LJ molecular size σ. Ten percent of our simulation runs are
carried out in equilibrium, i.e. for A0 = 0. We use N= 500 LJ particles inside of a
cubic simulation box of size L= 10σ. The temporal duration of each run is
1000τ , where τ = σ2/D0 is the Brownian time scale. After initialization the
system is randomized for 1τ at a very high temperature. Then we wait for 100τ to
allow the system to reach a steady state and then collect data during the remaining
time. In total we use 1000 such simulation runs; these are subdivided for purposes
of training (520), validation (280) and testing (200). The maximal current
encountered during training was J0σ2τ = 4.93. A more detailed account of our
machine-learning strategy is given in the appendix

Our aim is to machine-learn and hence to explicitly demonstrate the kinematic
map, ρ(r),v(r)→ fint(r) in steady state. We present the learning algorithm with
inputs ρ(x),v(x) and target fint(x). The data for these three fields are obtained
from building steady state averages via the adaptive BD over the corresponding
one-body operators. We recall the microscopic definition of the interparticle
one-body force density Fint(r) via equation (7) and we refer the reader to
appendix of [52] for a description of several methods to sample the current in BD
and hence obtain the overdamped velocity profile v(r). Finally, we use the
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standard counting method for the density profile ρ(r), although more efficient
‘force sampling’ methods [115–118] exist. At this stage we neither impose
adiabatic-superadiabatic splitting (11), nor structure-flow splitting (18), nor do we
use any analytical model form of the functional relationship. We rather work on
the level of the bare one-body simulation data, generated in the above described
randomized uniaxial flow situations of the desired planar symmetry.

We refer to the result of this procedure as the machine-learned internal force
field f ⋆int(x, [ρ,v]). This represents a ‘surrogate model’ in the sense of the
terminology of the machine learning community. By construction this data
structure depends functionally on the density profile and on the velocity profile.
Importantly the external force field fext(x), as given by the above described
randomized Fourier series, has not been used in the training, which was rather
based solely on the intrinsic force field and its kinematic dependence on the
density profile and the velocity field.

In order to test the validity of the functional relationship and to address the
question whether f ⋆int(x, [ρ,v]) indeed represents the true fint(r, t, [ρ,v]) of power
functional theory, as restricted to the present planar and steady situation, we
consider a toy flow situation as an application. We choose the density profile
to consist of a single (co)sinusoidal deviation from the bulk, ρ(x) = [0.5+
0.2cos(2π x/L)]σ−3. In order for the system to be in steady state, the velocity
then necessarily needs to satisfy v(x) = J0/ρ(x), where the strength of the current
J0 = const is a free parameter.

We proceed in two ways. First, we check for self-consistency. Therefore we
solve the force density balance relationship (6) for the external force field, which
yields the explicit result:

fext(x) = kBT
∂ lnρ(x)

∂x
+ γv(x)− f ⋆int(x, [ρ,v]). (29)

As is explicit in equation (29), inputting the toy state ρ(x), v(x) on the right hand
side yields a concrete machine learning prediction for the external force field on
the left hand side. We then input this result for fext(x) as the driving force field in a
single adaptive BD simulation run and expect this procedure to reproduce the
density and velocity profile of the toy state. The reproductive success will
however materialize only provided that (i) the functional kinematic dependence
actually exists and that (ii) it is accurately represented by the neural network.

The results, shown in figure 2, demonstrate the accomplishment of the
reconstruction of the toy state. This establishes that the machine learned
functional provides a numerically highly accurate representation of the true
internal force functional. That quantitative differences between results from direct
BD and from machine learning occur for the case of strongest flow (J0σ2τ = 5) is
not surprising, given that the value of the current is beyond the maximum
encountered during training (Jσ2τ = 4.93). However, despite the quantitative
deviations of the prediction for the interparticle force field, the qualitative
behaviour of the network remains entirely reasonable.

We take this validation via the machine learning to be a practical,
data-science-level verification of the existence of the power functional kinematic
map. We recall the original formal construction [43, 54] and its subsequent
confirmation via custom flow [52, 53].

Turning to the physics of the compressional flow, we use the
adiabatic-superadiabatic decomposition (11) together with the flow-structure
splitting (18) to analyze both the machine-learned functional f ⋆int(x, [ρ,v]) as well
as the direct simulation results. As anticipated, both flow and structural force
fields have nontrivial spatial variation, see figure 2. The flow force primarily
contains viscous effects that stem from the dissipation that the compressional and
extensional regions of the flow pattern generate. The structural force field
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Figure 2. Kinematic profiles and force fields for uniaxial compressional flow of the LJ fluid.
Results are shown from machine learning (lines) and from direct adaptive BD simulations
(symbols). Functional relationships are represented by vertical arrows. Shown are the density profile
ρ(x), the one-body current J(x) and the external force field fext(x) (top row) as a function of the
scaled distance x/σ, where σ is the LJ length scale and kBT/ϵ= 1.5 throughout. The density and
the current functionally determine both the interparticle force field fint(x) via the kinematic map and
the superadiabatic force field fsup(x) via the superadiabatic kinematic map (middle row). The
internal force field fint(x) splits into superadiabatic and adiabatic force contributions. The adiabatic
force field fad(x) is a density functional via the Mermin-Evans map of density functional theory. The
structural and flow force fields are split according to their symmetry upon motion reversal. The
colour code represents different values of the current J0σ2τ = 0,1,2,3,4,5 (from violet to yellow,
see the center panel in the top row). The two insets show the predictions from the analytical velocity
gradient functionals (21) and (22) on the same scale as the respective main panel; the transport
coefficients are chosen as η/(ϵτσ3) = 0.35 and χ/(ϵτ 2σ6) = 0.075 to give good agreement with
the quasi-exact data. The system with J0 = 0 is at rest in equilibrium and it doubles as the adiabatic
state because its density profile is identical to that of the flowing systems (as shown in the first
panel). The small differences in superadiabatic forces from BD and from machine learning for the
case of the highest current considered, J0σ2τ = 5, occur as this value is beyond those encountered
in the training data.

becomes more strongly inhomogeneous and also larger in magnitude upon
increasing the amplitude of the flow. This trend is necessary to provide a balance
for the increasingly asymmetric and growing external force field, which in turn is
required to keep the density profile unchanged upon increasing the throughput
through the prescribed density wave.

The power functional predictions (21) and (22) capture these effects
reasonably well given the simplicity of the analytical expressions, see the insets
in figure 2. We find our numerical results to satisfy the Noether sum rules (26)
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and (27) to very good accuracy. The values of the prefactors η and χ in
equations (21) and (22) characterize the dominant behaviour of the system in
response to spatial variation of the flow. The parameter η/(ϵτσ3) = 0.35
measures viscosity and χ/(ϵτ 2σ6) = 0.075 quantifies the strength of
nonequilibrium structure formation. We regard these amplitudes as being
well-defined transport coefficients, which will determine the leading behaviour of
the system in situations where higher-order gradient contributions are small or
even irrelevant. Using our methodology, the precise values of η and χ can be
obtained systematically from straightforward comparison to the data from the BD
simulations or the machine learning model.

It remains to point out the stark contrast with the standard DDFT (1), which
gives a trivial null result in the present setup by construction: the density profile
remains unchanged upon increasing flow, and so does the adiabatic force field. So
the DDFT provides no mechanism to account for the genuine nonequilibrium
physics; see the appendix for further details.

8. Conclusions

For the purpose of assessing the status of the DDFT equation of motion (1) we
have first described two exact limits that this approximation reproduces: the
dynamics of the noninteracting diffusive ideal gas (see equation (4)) and the
spatially inhomogeneous static equilibrium limit (see equation (2)). On general
grounds one expects the DDFT to perform well when the situation under
consideration is close to one of these limits. In particular near the static case this
is nontrivial, as the system might be dense and spatially highly structured, as
evident by a strongly inhomogeneous density profile. Provided that the dynamics
are driven weakly enough via a time-dependent external potential then the DDFT
[41, 42] can be a highly useful device, which enables one to describe the
temporal evolution as a chain of equilibrium states, labelled by time. As the
strictly static case (DFT) can correctly describe arbitrary spatial inhomogeneities,
such adiabatic time evolution can provide highly nontrivial information. It is
challenging, however, to know a priori whether or not the nonequilibrium
situation under investigation will be close to adiabatic. Leaving the use of bare
physical intuition aside, we are not aware of any simple quantitative criterion that
would allow one to judge a priori whether DDFT is reliable or not. In this sense,
the DDFT approximation can be viewed as being uncontrolled.

In general the contributions beyond the equilibrium physics will be relevant.
On the level of the formally exact one-body equation of motion (14), the
superadiabatic force field fsup(r, t) will then contribute and will potentially do
very significantly so. Together with the adiabatic force field, which follows from
the equilibrium excess free energy functional via −∇δFexc[ρ]/δρ(r, t), their sum
constitutes the full interparticle forces. These force fields are coarse-grained, in a
microscopically sharp way, to the one-body level of dynamical correlation
functions. We have argued (i) that power functional theory is a concrete formal
structure that allows to obtain fsup(r, t) from a generating functional and (ii) that
simple approximate forms already capture much relevant nonequilibrium physics
and they do so in a transparent and systematic way, and (iii) that machine learning
can be used as a practical representation.

We have described and exemplified for uniaxial steady compressional flow of
the three-dimensional LJ fluid the kinematic functional map that governs the
exact nonequilibrium dynamics on the one-body level of dynamic correlation
functions. As this description is based on a single position coordinate and a single
time variable, it is of both conceptual and practical simplicity. As described by
power functional theory the superadiabatic interparticle force field functionally
depends on the density and the velocity field, i.e. fsup(r, t, [ρ,v]), for overdamped
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Brownian motion. The functional dependence is causal, i.e. on the values of the
density profile and velocity field at previous times, in general up to an initial state.
The superadiabatic force field carries this kinematic dependence, i.e. on the
history of ρ(r, t) and v(r, t), but crucially it is independent of the external force
field that drives the system.

We have explicitly demonstrated the functional map ρ(r, t),v(r, t)→ fint(r, t)
by establishing this functional relationship via machine learning the intrinsic
force field. This includes as a special case the equilibrium map ρ(r, t)→ fad(r, t),
as it is relevant for the approximative adiabatic time evolution via the DDFT (1).
Using the force balance then gives direct access to the form of the required
external force field via equation (29). The machine-learned model of the
functional map hence enables ‘instant custom flow’ at negligible computational
cost at the time of use. We recall that the custom flow method [52, 53] is based on
the kinematic functional map, such that from knowing the kinematic one-body
fields, the external force field that is necessary to generate the given time
evolution follows straightforwardly from the exact force balance (6).

An analytical approach to one-body functional maps leads to the simple
structure of velocity gradient forms for the viscous and structural superadiabatic
forces, as exemplified in equations (16) and (17) for compressional flow, i.e. for
velocity fields with nonvanishing divergence. As we have shown, the resulting
predictions for the flow force (21) and for the structural force field (22) represent
a reasonable description of the simulation data and its representation via the
machine-learned functional. We attribute the remaining differences to
higher-order terms [60] which we have not addressed here for simplicity and
which we expect to become increasingly relevant under stronger driving. As we
have shown, our results from direct simulation, from machine learning, and from
the analytical approximations, satisfy exact global Noether sum rules.

We have restricted our discussion to a single and relatively easily accessible
type of nonequilibrium dynamics, that of stationary uniaxial compressional flow
that represents a model steady (batch) sedimentation situation. The power
functional approach allows to go much further, including the treatment of
viscoelasticity [57], as arising from superadiabatic memory, deconfinement under
shear [58], the dynamic decay of the van Hove pair correlation function as
governed by drag, viscous and structural forces [69, 70], and the complex forms
of both flow and structural forces that arise under spatially complex forms of
driving [60]. Time-dependent uniaxial flow is relevant in a variety of situations,
including colloidal stratification [119, 120] and sedimentation [121].

Although power functional theory operates on the one-body level of dynamical
correlation functions, two-body correlation functions are accessible both formally
via the nonequilibrium Ornstein–Zernike route [43] and explicitly by the
dynamical test particle limit. The latter is the dynamic generalization of Percus’
static test particle limit [62], which identifies two-point correlation functions,
such as g(r) as also recently shown to be intimatedly related to thermal Noether
invariance at second order [51], with one-body density profiles in an external
potential. This is set equal to the interparticle pair potential.

The dynamical test-particle limit goes further in that it describes the test
particle via its own dynamical degrees of freedom, which are coupled to those of
all other particles in the system. The concept was originally formulated as an
approximation within DDFT [63, 64] and formally exactly within power
functional theory [67]. Two-body superadiabatic effects were shown via
simulation work to be significant [68–70] and they arise naturally in an exact
formulation of the test particle dynamics [67]. The test particle limit allowed for a
rationalization of the dynamical pair structure as e.g. experimentally observed in
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two-dimensional colloids [10]. Recently an approach to DDFT based on the
two-body level was formulated [122] and earlier work was addressed at
construction of dynamical density functional theories from exactly solvable limits
[123]; we recall that [41, 42] provide exhaustive overviews. In event-driven BD
simulations superadiabatic forces were shown to consist of drag, viscous, and
structural contributions [69, 70]; see [43] for an extended discussion. The physics
of active particles [71–75] is very significantly governed by a vigorous interplay
between superadiabatic and adiabatic forces, both of which are very strong, as the
tendency of these systems to self-compress leads naturally to very high local
densities.

Furthermore, relevant and interesting microscopic models that go beyond the
simple fluid paradigm of a pair potential, such as the monatomic water model by
Molinero and Moore [124, 125] and the three-body gel by Saw et al [126, 127],
are accessible. Despite the complexity of both its defining Hamiltonian and the
intricate transient network structure, the inhomogeneous viscous response
of the three-body gel was recently demonstrated [61] to be surprisingly well
captured by a simple power functional flow approximation. We finally recall that
superadiabatic effects transcend overdamped dynamics, and are relevant both in
quantum dynamics [43, 81, 82] and in classical molecular dynamics [43, 79, 80].

While we have restricted ourselves to discussing the point of view of
functional relationships, it would be interesting to explore in future work possible
cross connections to other theoretical approaches, such as Onsager’s variational
principle for soft matter [128–131], stochastic thermodynamics [132], large
deviation theory [133, 134], mode-coupling theory [135, 136], generalized
hydrodynamics [137], local molecular field theory for nonequilibrium systems
[138], as well as to the physics of nonequilibrium phase transitions [139],
Brownian solitons [140], and crystal dynamics [141–144] and non-isothermal
situations [145]. Implications of the machine-learning methodology are
summarized at the end of the appendix.
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Appendix. Simulation and training details

Initialization

The nonequilibrium many-body physics that we investigate falls into the class of
temporal initial value problems. This holds true both on the full many-body
(phase space) level, as accessible via the simulations or formally via the
Smoluchowski equation [43], as well as on the reduced one-body level of the
temporal kinematic fields, i.e. the time-dependent density profile and current
distribution. Evidently one-body initial data needs to be available in order to start
the time evolution according to either the approximate DDFT (1) or the formally
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exact power functional equation of motion (14). In typical applications of one of
these frameworks to a dynamical problem, the system is taken to be in an
equilibrium state at a starting time t0 such that the current vanishes and the
density profile is known. Standard ways [146] to specify an initial state include
choosing the bulk and possibly applying (simple) external fields and letting the
system relax therein. The DFT point of view allows for more general
initializations as one can choose an equilibrium system with an arbitrary spatially
inhomogeneous density profile ρ(r, t0) as the starting point.

We recall from section 1 that for an equilibrium system with given interparticle
interactions, knowledge of the density profile [in the present case ρ(r, t0)] is
sufficient to formally exactly determine all static thermal properties. This fact [4,
150] constitues one of the major virtues of static DFT. Leaving representability
issues aside, prescribing a (physically sensible) form of ρ(r, t0) is feasible, as one
can picture this as being generated by an appropriate form of corresponding
external potential Vext(r, t0), where t0 acts as a mere label to specify the initial
state. As laid out above in section 1, the description formally requires to have
access to the free energy density functional F[ρ], which implicitly contains the
full static information about the thermal physics of the system.

In particular, the equilibrium many-body probability distribution function
Ψ(rN, t0) is uniquely determined, for given interparticle interactions and given
knowledge of the density profile [3, 4, 150]. (In the notation we have dropped the
dependence on momenta, which is trivial in the present situation.) One pictures
the system to have been in the same equilibrium state also at all prior times t< t0
and having undergone time evolution in this quiescent state up to t0. As an aside,
the equilibrium dynamics can then be characterized for bulk liquids on the
two-body level by the van Hove dynamical correlation function [3, 63–70,
147–149], with much recent progress from the power functional point of
view [69, 70].

Obtaining a statistical description requires in principle to average over the
initial distribution of microstates. In the context of many-body simulations, in
practice this necessitates to carry out a sufficient number of independent
realizations of the time evolution that is under consideration. Representative
studies relied on e.g. 104 realizations for the transient dynamics of hard spheres
under a temporally switched shear field [57], and on 2× 106 realizations [80] for
investigating superadiabatic acceleration effects that occur in Molecular
Dynamics. There are also special cases, such as test particle concepts that allow
efficient sampling of the bulk van Hove function via building moving averages
[69, 70]. We also point out work [151, 152] which address the initial state
dependence in the context of quantum mechanical time-dependent density
functional theory.

Steady states

In the present model situation of uniaxial compressional steady flow (we recall its
graphical illustration in figure 1) there is no need to temporally resolve the
one-body fields, as these are invariant in time. Hence we proceed in the standard
way of replacing the average over an ensemble of inital states with a temporal
average over a single trajectory of sufficiently long duration. Recalling the details
that are given in section 7, we average over time evolutions each with duration
1000τ , with τ = σ2/D0 denoting the Browian time scale for self diffusion with
diffusion constant D0 = kBT/γ, where γ is the friction constant against the
background. The strategy of identifying temporal and ensemble averages relies on
having an ergodic system of which the time evolution indeed explores the entirety
of the ensemble. As we deal with a liquid in the present illustrative case, we
expect ergodicity to hold.
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In order to validate this expectation, we have investigated the possibility of
dependence of the steady state results on the initial state of the simulation; see
figure 3 for illustrations of the chosen four different (crystalline and disordered)
microstates. We recall that we evolve the system over a waiting time of 100τ
before starting to sample the one-body correlation functions. The resulting steady
state profiles, see figure 3, bear no traces of the different initialization, and the
data of each of the four runs collapse onto each other. As this behaviour is already
observed on the level of starting with individual differing microstates, we expect
no changes if we were to start with a representative sample of, say 104,
microstates in order to numerically approximate an entire distribution.

Training procedure

The results shown in figure 3 also serve to illustrate our training procedure in
more detail. We use randomized forms of the external force field fext(x) via
superimposing Fourier modes that are compatible with the box size L via:
fext(x) =

∑nmax
n=0An cos(2πnx/L+Bn), which we cut off at nmax = 4. The

amplitudes An and phases Bn are generated randomly within a cutoff, which i)
makes the specific training protocol free of having to perform manual choices and
ii) removes any further bias thus easing the interpretation of the quality of the
machine learning predictions. Our currently adopted random training strategy is
suited to investigate issues of generality, universality and transferability both of
the underlying mathematical structure of power functional theory and of its
presently proposed specifically tailored implementation via supervised machine
learning. Nevertheless, as our supervised learning procedure is general, one could
well tune for specific applications and rather train on the basis of situations that
are close to the eventual use of the network, see e.g. [111] for a corresponding
enlightening study.

Our supervision protocol operates on the level of the simulation output in a
specifically organized way of (functional) dependencies of the obtained
histograms that represent the one-body distributions. All three involved functions
are taken from straightforward sampling in adaptive BD. The density profile ρ(x)
is obtained from the standard counting method. (We recall reduced-variance
sampling techniques such as force sampling [115–117], which could help in
acquiring numerical training data more efficiently.)

The current distribution J(x) can be sampled via the force balance equation or
alternatively via a temporally centered derivative of the particle trajectories. Here
the position resolved histogram is filled with the displacement vector of each
particle, between the position in the next and in the previous time step; see the
appendix of [52] for an in-depth description. The velocity profile then follows
straightforwardly from v(x) = J(x)/ρ(x).

Finally the interparticle force density Fint(x) is sampled in an analogous way
on the basis of a position-resolved histogram that simply accepts the
instantaneous interparticle force that acts on each given particle. The interparticle
force field is then obtained by simple normalization with the density profile,
fint(x) = Fint(x)/ρ(x).

From a data science point of view, and possibly even when working in a
physics-informed way, one might use the information in all three fields ρ(x), v(x)
and fint(x) to analyze and make predictions of the dynamical behaviour of the
system. However, our present approach is very specific and leaves no choice in
the general setup of the supervised learning. We have ρ(x) and v(x) as inputs and
fint(x) as the output or target of the neural network; we recall the description in
section 4 of the functional relationships that apply to the nonequilibrium physics.
As concrete illustration we show three representative training data sets in figure 3.
We find the success of the learning procedure to be robust against changes in even
simple network topology and choice of hyperparameters. We attribute these

21



J. Phys.: Condens. Matter 35 (2023) 271501 Perspective

Figure 3. Three representative cases (systems 1, 2, and 3) of nonequilibrium steady states under
external driving, as used for training the neural network. The results are obtained from adaptive BD
simulations under the influence of a temporally static external force field fext(x) (top row) that
consists of a random superposition of spatial Fourier modes. The zeroth Fourier mode represents a
constant force offset, which either vanishes (system 1) or drives the system out of equilibrium
(systems 2 and 3). The steady states are characterized by spatially and temporally constant currents
J(x) = J0 = const, with J0 = 0 in equilibrium (system 1) and J0 > 0 under drive (systems 2 and 3).
The density profile ρ(x) (second row) is temporally constant and spatially inhomogeneous, as
induced by the action of the external force field. The inhomogeneous velocity profile is simply the
inverse v(x) = J0/ρ(x) (third row). For each system 1, 2 and 3, the results for the respective steady
state profiles ρ(x),v(x), and the interparticle force field fint(x) (fourth row) are independent of the
type of initialization, as demonstrated by the results from the four differently initialized simulation
runs (indicated by differently coloured symbols) lying on top of each other. Here each system is
alternatively initialized via one of four protocols to select the initial microstate: simple cubic (green)
or close packed (yellow) crystals or an equilibrated bulk liquid state (violet) or an inhomogeneous
slab-like confined liquid (blue). Representative simulation snapshots in steady state (‘final states’
after 1000τ ) for system 2 illustrate the spatial structure of the flowing liquid; no imprints of the
initialization can be perceived. The machine learning is based on training data ρ(x) and v(x) [or
alternatively to the latter J(x) or ∂v(x)/∂x] that lead to the target interparticle force field fint(x) for
each given training system (1000 in total) in the supervised learning. While we here solely illustrate
the training procedure, we show in figures 2, 4, and 5 how the trained model can be used to both
predict and design nonequilibrium steady states.

22



J. Phys.: Condens. Matter 35 (2023) 271501 Perspective

Figure 4. Demonstration of the machine-learned kinematic force map and its use in the design of
nonequilibrium steady states. Shown are three different target shapes of the density profile ρ(x) (left
column): cosine wave (top row, results are identical to those shown in figure 2), triangle wave
(second row), and sawtooth-like wave (third row). For each of the three density waves the current
profile (second column) J(x) = J0 = const, and we prescribe alternative values J0τ/σ2 = 0
(equilibrium), 1, 2, 3, 4, and 5 (all nonequilibrium). Our aim is to obtain the specific form of fext(x)
via our trained machine learning model which then generates the target shapes of ρ(x) and J(x).
That this procedure indeed is successful is validated with BD simulations as shown via the symbols,
as both ρ(x) and J(x) are reproduced to high accuracy. Each of the three target density profiles ρ(x)
(lines) is strikingly matched by the simulation results (symbols); the data for the external force
profile fext(x) (right column) conincide per construction, as the output from machine learning is
taken as the input force field in the many-body simulations that are carried out to assess the
accuracy of the design procedure.

features to the fact that the mapping is formally exact, as summarized in the main
text and reviewed in detail in [43].

Universality and inverse design

The thus obtained functional relationship f ⋆int(x, [ρ,v]) not merely interpolates
between the training situations, but it rather captures the genuine correlated nature
of the statistical physics under consideration. We recall the target cosine-shaped
density wave (presented in figure 2 and replotted in the first row of figure 4 as a
reference). This situation was not genuinely part of the training but certainly close
in character. As a further demonstration we apply the network to a triangular
density wave (second row in figure 4) and also to a sawtooth-like density wave
(third row in figure 4), which are further removed from the situations encountered
during training. The excellent match with the direct simulation results of the
density profile and current distribution validates our approach.
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Figure 5. Shape of the external force field fext(x) (upper panel) that stabilizes the target
nonequilibrium sawtooth density profile ρ(x) (lower panel) with current strength J0σ2/τ = 5 (as
also shown in the third row of figure 4). The force field is generated either from power functional
theory via equation (A1) or from machine learning DDFT via equation (A2). While capturing the
correct shape of the external force profile, the DDFT produces in this case a quantitative error
between maximal and minimal force of size ϵ/σ. The respective results for the density profiles are
obtained from direct simulations. The power functional design meets the target profile in a
quasi-exact way, whereas quantitative deviations occur in DDFT in particular near the cusps of the
wave.

We finally return to the DDFT and to the purpose of the present Perspective of
discussing its virtues and shortcomings. We present as a final example, see
figure 5, its application to the sawtooth state. Shown is the external force profile,
as obtained from the machine-learned power functional, via the instant custom
flow equation (29), which we reproduce for convenience:

fext(x) = γ
J0
ρ(x)

+ kBT
∂ lnρ(x)

∂x
− f ⋆int(x, [ρ,v]). (A1)

In the present case this constitutes a (numerical) quasi-exact solution; we recall
the excellent agreement of the resulting kinematic profiles, shown in figure 4,
with the direct simulation results. We can now easily compare this to the adiabatic
DDFT prediction, as the equilibrium states were part of our training protocol
(cases of vanishing zeroth mode of the external force field). We can
straightforwardly implement this on the level of the neural network by simply
considering no flow, i.e. setting the velocity profile v(x) = 0, which yields a
quasi-exact representation of the adiabatic force; we recall the perfect agreement
shown in figure 4 for the cases with no flow, where J0 = 0 (dark purple symbols
and lines). Hence within DDFT the instant custom flow equation (A1) reduces to
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the following simple form:

fDDFT
ext (x) = γ

J0
ρ(x)

+ kBT
∂ lnρ(x)

∂x
− f ⋆ad(x, [ρ]). (A2)

Here the machine-learned adiabatic force field is obtained simply by evaluating
the full nework at vanishing velocity, i.e. f ⋆ad(x, [ρ]) = f ⋆int(x, [ρ,v= 0]). The
comparison shown in figure 5 indicates qualitatively correct behaviour of the
DDFT but quantitative errors of magnitude ϵ/σ.

The effects being quantitatively small should not lead one to conclude that the
physics are irrelevant. First, as laid out above, the planar uniaxial geometry is
intrinsically favorable for the DDFT. Secondly, we have chosen moderate values
for temperature and for density to ease our current pilot study for the use of
machine learning. This renders the situation relatively simply. However, as
emphasized above, a priori it is very difficult to assess whether or not the DDFT
will be sufficient to obtain a reliable estimate of the real time evolution. For a very
recent demonstration of quantitatively large superadiabatic (viscous and
structural) forces, we point the reader to the study by Sammüller et al [61] of the
nonequilibrium dynamics of a three-body colloidal gel former [126, 127].

Implications and related work

We take the quantitative success and computational ease of applying supervised
machine learning to the formal functional dependencies of nonequilibrium
many-body flow, as presently considered in a simple uniaxial flow geometry, as
an incentive to summarize several possible connections that could be explored in
future work. Our approach fits into the broader picture of coarse-graining
many-body systems out of equilibrium [44] and it is very specific in terms of input
and output variables of the neural network. The supervised machine learning
method gives the interparticle force field directly, in contrast to approaches that
are based on learning the excess free energy functional [109–112] which then
upon differentiation according to equation (10) give the (adiabatic approximation
for the) interparticle force density. DDFT was also used in learning the physics of
pattern formation from images [153], and for importance sampling in adaptive
multiscale simulations, see [42, 154] for a list of several further examples.

In the terminology of multiscale simulation methods for soft matter systems
[155], in our method we learn the characteristics of a fine-grained model (chosen
as the LJ fluid in the present model study) and, while not strictly obtaining a
coarse-grained model, are able to reduce the fine-grained information
systematically to the one-body level in a microscopically resolved way. It would
be interesting to see whether our approach is useful in the context of adaptive
simulation techniques [156–158] as applied e.g. to coupling boundaries of open
systems [159].

We would need to go beyond the presently considered steady states to address
memory effects, as are relevant both in classical [69, 70, 160, 161] and in quantum
systems [151, 152]. Given the recent interest in force-based quantum-mechanical
density functional theory [162, 163], we could imagine that apart from quantum
power functional theory [43, 49, 81, 82] our study could potentially be
inspirational in other force-based approaches to quantum dynamics [164–167].
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