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Abstract
We introduce a method to sample the orientational distribution function in computer
simulations. The method is based on the exact torque balance equation for classical many-body
systems of interacting anisotropic particles in equilibrium. Instead of the traditional counting of
events, we reconstruct the orientational distribution function via an orientational integral of the
torque acting on the particles. We test the torque sampling method in two- and
three-dimensions, using both Langevin dynamics and overdamped Brownian dynamics, and
with two interparticle interaction potentials. In all cases the torque sampling method produces
profiles of the orientational distribution function with better accuracy than those obtained with
the traditional counting method. The accuracy of the torque sampling method is independent of
the bin size, and hence it is possible to resolve the orientational distribution function with
arbitrarily small angular resolutions.

Keywords: torque balance, orientational distribution function, torque sampling,
reduced variance, liquid crystals

(Some figures may appear in colour only in the online journal)

1. Introduction

The spatial and orientational order in classical equilibrium
many-body systems is the result of a delicate balance between
forces and torques of internal, entropic (diffusive), and
external origin. One-body distribution functions, obtained as
statistical averages resolved in either space, orientation or both
of these, are essential for the description and understanding
of the organization of many-body systems at the microscopic
level. For example, the density profile, which is an average
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over a statistical ensemble of the number of particles at a given
position, provides information about the spatial structure of the
many-body system. Traditionally, the density profile in com-
puter simulations has been obtained by discretizing the simula-
tion box and counting the number of particles in each element
of the grid. Since the structure of the many-body system is the
result of a force balance, an alternative to counting events in
order to obtain the density profile consists of reconstructing
it from the spatially resolved force contributions [1, 2]. The
density profiles obtained via force-sampling methods have a
reduced variance as compared to those obtained via the tradi-
tional counting method. Moreover, the density at a given posi-
tion is constructedwith information from thewhole system.As
a result the error in the density profile does not depend on the
size of the elements of the grid [1, 2]. The density profile can
therefore be resolved with arbitrarily high spatial resolution
without increasing the computational cost. This is particularly
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useful for sampling two- [2] and three-dimensional [3] density
profiles. Force-based estimators can be also used to improve
the sampling of the radial distribution function [1, 4, 5], and
that of the correlation functions required in the Green–Kubo
expressions relevant for mobility profiles [6].

It is interesting to note that force-sampling methods can
be derived from the general and versatile mapped averaging
framework [7–11], in which approximate theoretical results
are used to reformulate an ensemble average with reduced
variance. Reduced-variance estimators were first introduced in
classical and quantum Monte Carlo simulations [12, 13]. An
account of reduced-variance estimators that make use of force
sampling methods is given in a recent review [14].

Beyond constructing statistical estimators with low vari-
ance in equilibrium systems, the internal force can be used to
derive force-based density functional theories [15, 16], and it
plays a fundamental role in the construction of exact sum rules
using the symmetries of the system [17–19]. Moreover, the
use of the thermodynamic force can also improve the accur-
acy of adaptive resolution schemes [20] in which the simu-
lation box is split in regions that can be treated with differ-
ent levels of resolution [21–23]. Another potential application
of force sampling methods is to improve the convergence of
Kirkwood–Buff [24] integrals in molecular simulations [25].

Moreover, the knowledge of the internal force field is not
only beneficial in equilibrium systems. The adiabatic approx-
imation, which substitutes the non-equilibrium internal forces
by those in an equilibrium system, is at the core of popular
dynamical theories such as dynamic density functional theory
(DDFT) [26–30]. Sampling the internal forces in many-body
non-equilibrium simulations and comparing them to those in
equilibrium systems is therefore crucial to develop and test
the accuracy of dynamical theories that go beyond the adia-
batic approximation such as superadiabatic-DDFT [31] and
power functional [32–34] theories. Knowledge of the non-
equilibrium internal forces facilitates also the construction of
the external force field that generates a desired dynamical
response via custom flow methods [35, 36], and serves to gain
insight into physical processes such as the occurrence of vis-
cous forces generated by the acceleration field [37].

In systems with translational and rotational degrees of free-
dom, such as liquid crystals, it is not only the forces but also the
torques that are crucial in the determination of the equilibrium
and non-equilibrium properties of the many-body system. The
force balance equation is complemented and coupled with a
torque balance equation. Together, the force and the torque
balance equations determine in equilibrium the positional and
the orientational order of the system.

Here, we demonstrate that torque sampling, i.e. the ana-
logue to force sampling in systems with orientational degrees
of freedom, significantly improves the sampling of the orient-
ational distribution function in computer simulations as com-
pared to traditional counting methods. As a proof of concept,
we sample the torques using several differing types of dynam-
ics (overdamped Brownian and Langevin dynamics), dimen-
sionality (two- and three-dimensional systems), interparticle
interaction potential (rectangular and Gay–Berne particles),
type of orientational order (uniaxial and tetratic), and overall

density. In all cases, torque sampling outperforms the tradi-
tional counting method.

2. Theory

We consider here classical systems of N identical interact-
ing particles governed by either Langevin or overdamped
Brownian dynamics. Exact one-body force and torque balance
equations hold in equilibrium, and can be used to calculate
one-body distribution functions from the forces and torques
acting in the system. We start by revisiting the force bal-
ance equation in a many-body system with only translational
degrees of freedom.

2.1. Force balance equation for isotropic particles

In many-body systems with only translational degrees of free-
dom, such as a system of isotropic particles (e.g. a fluid of
Lennard-Jones particles), the exact one-body force density
balance equation in equilibrium reads [15, 38]

0=−kBT∇ρ(r)+F(r). (1)

The first term on the right hand side of equation (1) stems
from the (ideal gas) diffusion, with kB being the Boltzmann
constant, T is absolute temperature, ∇ is the derivative with
respect to the spatial coordinate r, and ρ(r) is the one-body
density distribution which is given by

ρ(r) =
⟨∑

i

δ(r− ri)
⟩
, (2)

where the angles denote a statistical average over an equilib-
rium ensemble, δ(·) is the Dirac distribution, ri is the posi-
tion of particle i, and the sum runs over all the particles in the
system.

The second term on the right hand side of equation (1) is
the force density profile, given by

F(r) =
⟨∑

i

δ(r− ri)fi(rN)
⟩
, (3)

where fi is the sum of the internal and the external forces act-
ing on particle i in microstate rN = r1 . . .rN with N particles.
That is

fi(rN) =−∇i u(rN)+ fext(ri), (4)

where ∇i is the derivative with respect to ri, and u(rN) is
the total interparticle interaction potential. In equilibrium,
the (imposed) external force fext(r) must be conservative and
hence

fext(r) =−∇Vext(r), (5)

with Vext(r) an imposed external potential. The force profile
follows directly from the force density profile via normaliza-
tion with the density profile, i.e. f(r) = F(r)/ρ(r).
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The sum of the ideal, internal, and external force densit-
ies vanishes everywhere in space since the system is in equi-
librium. Otherwise there would be a net flow of particles.
In equilibrium, the exact force density balance equation,
equation (1), holds in systems following either Newtonian
dynamics, Langevin dynamics, or overdamped Brownian
dynamics.

Both, the density profile ρ(r) and the force density pro-
file F(r), can be easily sampled in computer simulations
via equations (2) and (3), respectively. Sampling ρ(r) via
equation (2) is the traditional method of counting of events
of particle occurrences at space points.

The exact force density balance equation, equation (1), can
also be used to calculate the density profile ρ(r) via the forces
instead of the direct traditional counting method. Inverting
equation (1) results in

ρ(r) = ρ0 +(kBT)
−1∇−1 ·F(r), (6)

with ρ0 a constant and ∇−1 the inverse ∇ operator. In effect-
ively one-dimensional systems (e.g. planar geometry), the pro-
files depend only on one space coordinate and hence the
∇−1 operator reduces to a simple spatial integral. Differ-
ent approaches can be used to solve equation (6) in more
general geometries [2]. The unknown integration constant ρ0
in equation (6) can be determined via normalization of the
density

ˆ
drρ(r) = N, (7)

where the integral is over thewhole system volume. Results for
the density profile calculated via force sampling, equation (6),
carry a statistical uncertainty smaller than that of the standard
counting method [2] since (i) force sampling avoids the inher-
ent ideal gas fluctuations, and (ii) uses non-local information,
the forces in the whole system, to determine the density profile
at each space point.

2.2. Torque balance equation for anisotropic particles

For anisotropic particles, the one-body density distribution
depends not only on the space coordinate r but also on the
orientation, which is denoted here by the unit vector û:

ρ(r, û) =

⟨∑
i

δ(r− ri)δ(û− ûi)

⟩
. (8)

In addition to the exact equilibrium one-body force density
balance equation,

0=−kBT∇ρ(r, û)+F(r, û), (9)

there exists an exact one-body torque density balance
equation:

0=−kBTR̂ρ(r, û)+T(r, û). (10)

Here, F(r, û) and T(r, û) are the force density and the
torque density, respectively. Both, F(r, û) and T(r, û), contain

external and internal (inter-particle) contributions and they
depend in general on position and orientation. As before, ∇
is the gradient operator acting on the position, and R̂ is the
orientational counterpart acting on the orientation û, i.e.

R̂= û×∇û, (11)

with ∇û the derivative with respect to the Cartesian coordin-
ates of û.

The one-body torque density is accessible in computer sim-
ulations via

T(r, û) =

⟨∑
i

δ(r− ri)δ(û− ûi)ti(rN, ûN)

⟩
, (12)

with ûN = û1 . . . ûN and ûi = (sinθi cosφi,sinθi sinφi,cosθi)
being the orientation of particle i. Here, θi and φi are the polar
and azimuthal angles of particle i, respectively. The torque on
particle i is ti, given by

ti
(
rN, ûN

)
=−R̂i u

(
rN, ûN

)
− R̂iVext (ri, ûi) , (13)

with R̂i = ûi×∇ûi . Note that both the total interparticle
potential u(rN, ûN) and the external potential Vext(r, û) are
allowed to carry a dependence on the particle orientation. The
one-body torque density is therefore the sum of internal and
external contributions

T(r, û) = Tint(r, û)+Text(r, û), (14)

with

Tint(r, û) =−

⟨∑
i

δ(r− ri)δ(û− ûi)R̂iu
(
rN, ûN

)⟩
,

(15)

Text(r, û) =−

⟨∑
i

δ(r− ri)δ(û− ûi)R̂iVext (ri, ûi)

⟩
. (16)

Using equation (8) the external contribution is simply

Text(r, û) =−ρ(r, û)R̂Vext(r, û). (17)

Further details regarding the derivation of the one-body
torque density balance in equilibrium are given in appendix A.

In general, the force and the torque density balance
equations are linked via the one-body density distribution.
Here, we focus only on the role of the torque balance equation.
For this we consider in what follows systems that are homo-
geneous in space and therefore cases in which the force bal-
ance equation does not play any role. In such systems ρ(r, û) =
ρbf(û), with ρb being the bulk density, and f(û) being the ori-
entational distribution function. That is, f(û)dû is the probab-
ility of finding a particle with orientation ûwithin a solid angle
dû. The orientational distribution function is therefore normal-
ized such that ˆ

dûf(û) = 1. (18)
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Using the traditional sampling method, the orientational dis-
tribution function can be sampled in computer simulations as

f(û) =
1
N

⟨∑
i

δ (û− ûi)

⟩
(19)

=
1
N

⟨∑
i

1
sinθi

δ (θ− θi)δ (φ−φi)

⟩
. (20)

The prefactor 1/N ensures the proper normalization of the ori-
entational distribution function.

For spatially homogeneous systems, the one-body torque
density balance equation (10) simplifies to

0=−kBTρbR̂f(û)+T(û). (21)

Isolating the ideal gas term of equation (21) and integrat-
ing appropriately we obtain an expression for the orientational
distribution function

f(û) = f0 +(ρbkBT)
−1R̂

−1
·T(û). (22)

Here, R̂
−1

is formally the inverse operator of R̂ and f0 is
an integration constant that ensures the proper normaliza-
tion of the orientational distribution function. For both, two-
dimensional systems and uniaxial three-dimensional systems,

the inverse operator R̂
−1

reduces to a simple angular integral,
see appendix B.

Obtaining the orientational distribution function via the
one-body torque density balance has the advantage of treat-
ing the ideal gas part explicitly and hence, it avoids the corres-
ponding fluctuations present in the counting method. The only
source of statistical inaccuracies is in the sampled one-body
torque density which is integrated over in order to obtain the
orientational distribution function. As it turns out, this process
reduces the statistical noise significantly.

3. Results

As a proof of concept, we test the validity of the torque
sampling method with two different systems: (i) two-
dimensional rectangular particles following Langevin dynam-
ics and (ii) three-dimensional Gay–Berne particles following
overdamped Brownian dynamics.

3.1. Two-dimensional system of rectangular particles

We consider a two-dimensional system of particles with rect-
angular shape undergoing Langevin dynamics (implemented
according to [39]). The interaction between two particles is

modeled via a purely repulsive potential ϕ(r) = ϵ
(
σ
r

)12
. Here,

r is the minimum distance between the two particles, σ is our
length scale, and ϵ is our energy scale. The potential acts only
between the two closest points (one on each particle) located
on the particles’ perimeter. The interparticle potential gener-
ates both an internal force and an internal torque. Details about

the calculation of the forces and the torques, as well as about
the integration of the equations of motion are given in the
appendix C.

We study a system of N= 64 rectangular particles with
length L/σ = 10 and width D/σ = 2 in a square box of length
100σ and periodic boundary conditions. We set the temperat-
ure to kBT/ϵ= 1 and the integration time step to∆t/τ = 10−3

with τ = σ
√
m/ϵ and m the mass of one particle. We sample

every 10∆t. Since the system is very diluted, the equilibrium
bulk state is isotropic. We induce orientational order via the
external potential Vext(φ)/ϵ=−0.5cos2φ, with the angle φ
measured anticlockwise with respect to the x−axis. A charac-
teristic snapshot of the system is shown in figure 1.

We initialize the particles randomly and equilibrate the sys-
tem with a simulation lasting 103τ . After equilibration we
sample the orientational distribution function via the count-
ing and the torque sampling methods. The results are shown in
figure 1 for three different sampling times: 10τ panel (a), 103τ
panel (b), and 105τ panel (c). Due to the head-tail symmetry of
the particles we represent the orientational distribution func-
tion in the interval φ ∈ [0,π] only. Torque sampling provides
at each time a profile which is closer to the ‘true’ equilibrium
profile than the one provided by the counting method. The
‘true’ equilibrium profile feq(φ) is defined here as the arith-
metic mean of the profiles obtained with the counting and the
torque sampling methods in a long simulation (total simula-
tion time 107τ ). For all sampling times the statistical noise in
the profiles using the counting method is significantly larger
than that using the torque sampling method.

To quantify the accuracy of each method, we define an
error parameter as the integrated square difference between
the ‘true’ equilibrium profile and the sampled profile

∆=

ˆ π

0
dφ [ fs(φ)− feq(φ)]

2
. (23)

Here, f s is the profile sampled using the counting or the torque
sampling methods. As can be seen in figure 1(e) the error of
the torque sampling method is for all sampling times below
the error of the counting method. For this particular bin size
(10−4π) one has to sample about ten times longer using the
counting method than using the torque sampling method to
reach the same accuracy.

In figure 1(f) we investigate the effect of varying the bin
size at a fixed sampling time (102τ ). By decreasing the bin
size we increase the level of detail with which we resolve the
orientational distribution function. However, decreasing the
bin size obviously increases the number of bins and, as a dir-
ect consequence, the error in the traditional counting method
also increases. Note that in the counting method the number of
events that contribute to each bin is proportional to the bin size.
On the other hand, the error in the torque sampling method
is essentially independent of the bin size. The error does not
increase by decreasing the bin size because the orientational
distribution function is not determined by the local number of
events. Instead, at each orientation the orientational distribu-
tion function is obtained via an orientational integral over the
torque density. Analogue behavior occurs also when sampling
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Figure 1. Orientational distribution function sampled with the counting method (orange) and the torque sampling method (blue) for three
different sampling times: (a) 10τ , (b) 103τ , and (c) 105τ . The black dashed line is the ‘true’ equilibrium profile obtained by sampling over
107τ and taking the arithmetic mean of the counting and the torque sampling methods. The bin size is 10−4π. The inset in (c) is a close
view of the encircled region. (d) A characteristic snapshot of the system: N= 64 particles with rectangular shape subject to a weak external
potential that orients the particles along the x−axis. A log− log plot of the error ∆ as a function of the sampling time (e) and the error ∆ as
a function of the bin size (f) using the counting (orange squares) and the torque sampling (blue circles) method. In panel (e) the bin size is
fixed to 10−4π and the dashed lines are linear fits. In panel (f) the sampling time is fixed to 102τ and the solid lines are guides for the eye.

the density profile using the force sampling method in systems
with only translational degrees of freedom [1, 2, 14].

3.2. Tetratic order

Instead of sampling the complete, angle-resolved, orienta-
tional distribution function, it is common to sample only a
reduced set of orientational order parameters (moments of the
distribution). However, having access to the complete orient-
ational distribution function can help to fully understand the
type of order in the system. To illustrate this, we investig-
ate a densely packed system of N= 290 particles with length
L/σ = 4 and width D/σ = 2 in a square box of length 75σ.
The equilibration time was 104τ . Due to their small length-
to-width aspect ratio, the particles form in bulk at moderate
densities a tetratic phase [40–42]. In the tetratic phase the
particles are equally likely oriented along two directions per-
pendicular to each other. We add an external potential of the
formVext(φ)/ϵ=−0.5sin2(φ−φ0)withφ0/π = 1/4 and set
the temperature to kBT/ϵ= 1. The external potential breaks
the symmetry of the tetratic phase by favoring the orientation
along the bottom-right to top-left diagonal of the square sim-
ulation box.

A snapshot of the system is shown in figure 2(a). The
particles are colored according to their orientation. The result-
ing orientational distribution function is shown in figure 2(b)
for a short sampling time of 1τ and in figure 2(c) for a sampling
time of 105τ . Clearly more particles are aligned along the
bottom-right to top-left diagonal (φ/π = 0.75) than along the

other diagonal (φ/π = 0.25) due to the external potential. In
this example, the uniaxial order parameter or even the com-
bination of both the uniaxial and the tetratic order paramet-
ers would not give enough information about the orientational
order in the system.

The distributions sampled with torque sampling are always
smoother than those sampled with the counting method. How-
ever, torque sampling sometimes produces artifacts for very
short sampling times (of the order of 1τ ), like the negat-
ive values around φ/π = 0 shown in figure 2(b). It might be
possible to eliminate these artifacts by either using a com-
bination of linear estimators [43] or the mapped averaging
framework [10]. The artifacts are at least partially due to local
angular currents originated by fluctuations that do not vanish
(on average) due to the short sampling times. The occurrence
of these angular currents is apparent when comparing the ori-
entational distribution functions sampled at short, figure 2(b),
and long, figure 2(c), sampling times (cf the evolution of the
value of the orientational distribution functions at the peaks).
For longer sampling times, figure 2(c), the angular current
averages to zero for all orientations, and the distribution func-
tion calculated with torque sampling is free of artifacts. The
profile obtained with torque sampling is more precise than that
obtained via counting. Even at very long sampling times, e.g.
105τ in 2(c), torque sampling outperforms counting. This is
particularly clear when looking at the numerical angular deriv-
ative of the distribution function, see inset of figure 2(c).

Sampling the torques is not only useful to improve the
sampling of the orientational distribution function but it also

5
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Figure 2. (a) Characteristic snapshot of a Langevin dynamics simulation of N= 290 rectangular particles in a square box of side length
Lbox/σ = 75 subject to an external potential that favors particle orientations along the bottom-right to top-left diagonal of the box. The
particles are colored according to their orientation φ, measured with respect to the x-direction, see colorbar. Orientational distribution f(φ)
obtained via counting (orange lines) and torque sampling (blue lines) using a bin size of 10−3π and for two sampling times: 1τ (b) and 105τ
(c). The inset in (c) shows the numerical angular derivative of the orientational distribution function f ′(φ) = df/dφ using the central
difference.

Figure 3. Components of the torque balance equation (normalized
with the bulk density ρb) as a function of the angle in the tetratic
configuration with an external field shown in figure 2. The torques
point in the z-direction. Positive (negative) torques try to rotate the
particles anticlockwise (clockwise), as indicated at selected angles
by the color arrows. The external potential favors particle
alignments along the bottom right to top left diagonal (φ/π = 0.75)
of the simulation box. The bottom left to top right diagonal is
located at φ/π = 0.25. Shown are the internal torque density (red),
the diffusive torque density (blue), the external torque density
(yellow), and the total torque density (black).

helps to understand the underlying physics. As an illustra-
tion, we show in figure 3 the components of the torque bal-
ance equation in the system with tetratic ordering and an
external potential. The torques point along the z-direction.
That is, positive (negative) torques tend to rotate the particles
anticlockwise (clockwise), increasing (decreasing) therefore
the value of φ. The diffusive torque (blue) always favors
an isotropic state by trying to remove the inhomogeneities
in the orientational distribution function. In the current con-
figuration, the diffusive torque tries to orient the particles
away from the diagonals. The behavior of the internal torque
depends on several factors such as the interparticle poten-
tial, the temperature, and the density. In the current example,

the internal torque (red) favors tetratic ordering by trying to
align the particles along the diagonals. The imposed external
torque (yellow) tries to orient the particles along the bottom-
right to top-left diagonal (φ/π = 0.75) and it also tries to
orient the particles away from the other diagonal at φ/π =
0.25. As dictated by the torque balance equation, the sum
of all three components (diffusive, internal, and external)
vanishes since the system is in equilibrium, see figure 3
(black line).

3.3. Three-dimensional Gay–Berne fluid

We further test the method in a three-dimensional system of
N= 500 Gay–Berne particles [44] confined in a box of size
lengths Lx/σ0 = 10, Ly/σ0 = 10, and Lz/σ0 = 25 with peri-
odic boundary conditions. We use the parameters σ0 and ϵ0
of the Gay–Berne potential as our length and energy scales,
respectively. All details about the interparticle potential are
presented in appendix D. We set the length-to-width ratio
of the particles to three. The particles follow overdamped
Brownian dynamics. Time is measured in units of τ0 =
γσ2

0/ϵ0, with γ the translational friction coefficient against
the implicit solvent. The particles are subject to an external
potential Vext(θ)/ϵ0 =−0.5cos2(θ), with θ the polar angle.
Hence, the external potential favors uniaxial alignment of the
particles along the z-axis. The temperature is set to kBT/ϵ0 =
0.5. For details regarding the implementation of the over-
damped Brownian dynamics see appendix E.

The orientational distribution functions obtained via torque
sampling and counting are shown for different sampling times
in figure 4. Again, torque sampling provides profiles with
better accuracy than counting. The differences between both
methods aremore acute for small values of the polar angle. The
area of the bins on the unit sphere decreases close to the poles.
Therefore, less events contribute to each bin, which produces
large fluctuations of the profile obtained with the counting
method. However, the profile obtained with torque sampling
is unaffected by this problem since the error is independent of
the bin size.
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Figure 4. Overdamped Brownian dynamics simulation of N= 500 Gay–Berne particles in a three-dimensional box with periodic boundary
conditions. Orientational distribution function f as a function of the polar angle θ obtained via counting (orange line) and torque sampling
(blue line) using a bin size of ∆θ = 10−3π/2 for different sampling times: 103τ0 (a), 104τ0 (b), and 105τ0 (c). The inset in panel (c) is a
close view of the region of small polar angles as indicated.

4. Conclusion

Reduced-variance estimators can be constructed using force
sampling methods [14] to measure e.g. the density profile and
the radial distribution function in computer simulations with
better accuracy than the traditional counting method. We have
shown here that in equilibrium systems of interacting aniso-
tropic particles, reduced-variance estimators can be also con-
structed via torque sampling. By sampling the torques and
using the exact torque balance equation of equilibrium many-
body systems, we have developed a method to accurately
reconstruct the orientational distribution function. Although
the cases that we have studied here are arguably toy models,
they do cover a wide range of situations, including two- vs
three-dimensional systems, dilute vs dense systems, uniaxial
vs tetratic orientational order, and Langevin vs overdamped
Brownian dynamics. In all cases, torque sampling has outper-
formed counting.

Force sampling works equally well in Brownian dynamics,
molecular dynamics, andMonte Carlo simulations [2]. Hence,
although we have used here Brownian and Langevin dynam-
ics, the torque sampling method is expected to also outperform
the counting method in molecular dynamics and Monte Carlo
simulations.

For small bin sizes, the statistical error for the count-
ing method diverges, while the error for the torque sampling
method is independent of the size of the bin. Hence, torque
sampling can be particularly useful in cases where a large
number of bins might be required such as for example
when investigating biaxial nematics in three-dimensional sys-
tems [45–47].

We have restricted our study to cases without positional
order such that force and torque balance equations are
decoupled. There exist several fully inhomogeneous stand-
ard situations accessible in computer simulations [48–51] in
which both the density profile and the orientational distribu-
tion profile depend on the position coordinate, i.e. ρ(r, û) =
ρ(r)f(r, û). These include, among others, the formation of
stable bulk phases with both positional and orientational
order [52–54], confinement [55–57], sedimentation [58–60],

formation of topological defects [61–64], and nucleation [65]
in liquid crystals. The force balance equation and the torque
balance equation are then coupled and jointly determine the
spatial and the orientational order of the system. The combin-
ation of force and torque sampling should be in such cases
substantially better than counting which requires filling a mul-
tidimensional histogram in both positions and orientations.

The formulation of the torque sampling method presented
here cannot be directly applied to hard particle models [66],
in which forces arise only due to particle collisions. How-
ever, the mapped averaging framework is applicable in hard
particle models [67]. Using the torque balance equation as
input for the mapped averaging framework might result in
reduced-variance estimators for the orientational distribution
function. Exact sum rules involving the torques follow from
the symmetries of the system [17] and might be also useful
in the derivation of reduced-variance estimators in computer
simulations of anisotropic particles.

The forces between individual colloidal particles are also
accessible experimentally [68]. It might therefore be possible
to use force and torque sampling methods for the determina-
tion of distribution functions in experimental systems.
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Appendix A. Force density and torque density
balance equations

The force balance and torque balance equations in the con-
text of density functional theory are shown e.g. in [69]. We
sketch here the derivation of the force density and torque
density balance equations for many-body systems of particles
following overdamped Brownian dynamics. Let Ψ(rN, ûN, t)
be the many-body probability distribution function of an
overdamped system. Then, statistical averages ⟨·⟩ within the
Fokker–Planck formalism can be computed as

⟨·⟩=
ˆ

drN
ˆ

dûN ·Ψ(rN, ûN, t), (A1)

where the integrals cover the complete space of configurations.
The velocity vi and the angular velocity ωi of particle i are
given by

γvi =−kBT∇i lnΨ−∇iu(rN, ûN)+ fext(ri, ûi, t), (A2)

γrωi =−kBTR̂i lnΨ− R̂iu(rN, ûN)+ τ ext(ri, ûi, t). (A3)

Here, γ and γr are the translational and rotational friction con-
stants against the implicit solvent, respectively, and τ ext is an
external torque field. The current J and the angular current Jω
are

J(r, û, t) =

⟨∑
i

viδ(r− ri)δ(û− ûi)

⟩
, (A4)

Jω(r, û, t) =

⟨∑
i

ωiδ(r− ri)δ(û− ûi)

⟩
. (A5)

Multiplying equations (A2) and (A3) by δ(r− ri)δ(û− ûi),
summing over all particles i, and applying the average in
equation (A1) yields directly

γJ(r, û, t) =−kBT∇ρ(r, û, t)+F(r, û, t), (A6)

γrJω(r, û, t) =−kBTR̂ρ(r, û, t)+T(r, û, t). (A7)

The above force (A6) and torque (A7) density balance
equations hold in full non-equilibrium situations. In equilib-
rium, the equations simplify further since: (i) the time depend-
ence drops from the density profile, the force density F, and
the torque density T, (ii) the external force and the external
torque are conservative, and (iii) both J and Jω vanish. Hence,
in equilibrium equations (A6) and (A7) reduce to equations (9)
and (10), respectively.

The equilibrium force and torque balance equations do not
change if the particles obey Langevin or molecular dynamics
instead of overdamped Brownian dynamics but the derivation
is slightly different. To derive the force and the torque balance

equations in Langevin dynamics or molecular dynamics, one
needs to time differentiate the current and the angular current,
both of which also vanish in equilibrium:

J̇(r, û) =
d
dt

⟨∑
i

viδ(r− ri)δ(û− ûi)

⟩
= 0, (A8)

J̇ω(r, û) =
d
dt

⟨∑
i

ωiδ(r− ri)δ(û− ûi)

⟩
= 0. (A9)

Here, the average ⟨·⟩ is again performed over the complete
configuration space which in molecular dynamics includes
integrals over the linear and angular momenta in addi-
tion to those over the positions and the orientations of the
particles. Incorporating the time derivative inside the averages
in equations (A8) and (A9) results in the force and torque bal-
ance equations. In equilibrium, the integrals over the linear and
the angular momenta can be carried out explicitly.

Appendix B. Torque sampling for single angular
dependencies

We derive here the expressions for the orientational distribu-
tion function as an angular integral over the torques in the sys-
tem. The rotational operator can be written as

R̂= û×∇û = eφ
∂

∂θ
− eθ

1
sinθ

∂

∂φ
, (B1)

with eφ and eθ being the unit vectors on the unit sphere in the
azimuthal and in the polar directions, respectively.

B.1. Two-dimensional system

In the two-dimensional system of rectangular particles, the ori-
entational distribution function depends only on the azimuthal
angle f = f(φ). Hence, using θ = π/2, the rotational operator,
equation (B1), simplifies to R̂= ez∂/∂φ, and the torque dens-
ity balance equation (21) is then

0=−kBTρbez
∂f(φ)
∂φ

+T(φ), (B2)

with T also directed along the ez direction. The orienta-
tional distribution function can be then reconstructed with the
sampled torques via

f(φ) = f0 +
1

kBTρb

ˆ
dφT(φ) · ez, (B3)

with f 0 a normalization constant such that
´
dφ f(φ) = 1.

Using equation (17) it follows that

Text(φ) =−ρbf(φ)
∂Vext(φ)

∂φ
ez, (B4)

which inserted in equation (B2) can be used to first solve
the homogeneous equation analytically and then treat the
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internal torque density as an inhomogeneity. We find that both
approaches give similar results.

B.2. Three-dimensional uniaxial system

We consider now the three dimensional system of Gay–Berne
particles with a uniaxial distribution function, i.e. f = f(θ)
and an external potential Vext(θ) that depends also only on
the polar angle. Hence the rotational operator, equation (B1),
is R̂= eφ∂/∂θ, which inserted in the torque density balance
equation yields

0=−kBTρb
∂f(θ)
∂θ

eφ +T, (B5)

where T= (Tint(θ)+ Text(θ))eφ, from which we obtain

f(θ) = f0 +
1

kBTρb

ˆ
dθT(θ). (B6)

The normalization constant f 0 is here such that
´
dûf(θ) = 1.

Again, it is possible to first analytically solve the homogeneous
differential equation of (B5) by writing the external torques
explicitly

Text(θ) =−ρb f(θ)
∂Vext(θ)

∂θ
eφ, (B7)

and treat the internal part as the inhomogeneous part.

Appendix C. Interparticle interaction between two
rectangles and Langevin dynamics

Two rectangles interact via a purely repulsive pair-potential of
the form

ϕ(r) = ϵ
(σ
r

)12
, (C1)

with r being the minimum distance between the two rect-
angles. Depending on the positions and the orientations of the
particles, there are two possible scenarios, see figure 5: (i) the
minimum distance is between a corner of one particle and a
point located on an edge of the other particle, or (ii) the min-
imum distance is between two corners. We introduce a cut-off
distance of rc = 2L+ 3σ between the centers of mass of the
particles. The potential generates a contact force between the
two particles. The effect of the contact force between the two
closest points is equivalent to apply both a force and a torque
on the center of masses of the particles.

The force acting on the center of mass of particle i due to
particle j is given by

fij =−∂ϕ

∂r
r
r
=−fji, (C2)

and the torque acting on particle i due to particle j is given by

tij =−ûi×
∂ϕ

∂ûi
= rci × fij. (C3)

Figure 5. The minimum distance between two rectangles r is either
between a corner and an edge (a) or between two corners (b). The
effect of the contact force acting on the points of minimum distance
(top panels) is equivalent to the effect of the same force and a torque
acting on the center of mass (bottom panels).

Here, r is the vector joining the closest points between
particles i and j and ûi denotes the orientation of particle i.
The vector rci joins the center of mass of particle i with the
point of application of the force.

To calculate the minimum distance between two particles
we calculate all possible corner-corner and corner-edge dis-
tances and select the minimum of all of them.

Verlet-type integration algorithm for Langevin
dynamics.

We calculate the trajectories following the integration
scheme for Langevin dynamics presented in [39] for isotropic
particles. The translational equations of motion for particle i
are given by

ṙi =vi, (C4)

mv̇i =fi− γvi+ frandi . (C5)

Here ri, vi, and fi are the position, the velocity, and the total
force (internal plus external) of particle i (the overdot indic-
ates the time derivative), m is the mass of one particle, γ is the
translational friction coefficient, and f randi is a delta-correlated
Gaussian random force (described in detail in appendix E).
These equations are integrated with the following Verlet-type
scheme [39]
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ri(t+∆t) = ri(t)+ b∆tvi(t)

+
b∆t2

2m

[
fi(t)+ f randi (t+∆t)

]
, (C6)

vi(t+∆t) = avi(t)+
∆t
2m

[afi(t)+ fi(t+∆t)]

+
b∆t
m

f randi (t+∆t), (C7)

with the parameters a= (1−α)/(1+α), b= 1/(1+α) and
α= γ∆t/(2m).

The equations of motion for the angular degrees of freedom
in our two-dimensional system of rectangular particles follow-
ing Langevin dynamics are given by

φ̇i = ωi, (C8)

Iω̇i = ti− γrωi+ t randi . (C9)

Here φi, ωi, and ti are the azimuthal angle, the angular velo-
city, and the torque (internal and external) of particle i, γr is
the rotational friction coefficient, trandi is a random torque (see
details in appendix E), and I= m(L2 +D2)/12 is the moment
of inertia around the axis normal to the particle that passes
through the center of mass (the particles are assumed to have a
homogeneous mass distribution). The torques and the angular
velocity point along the z-direction (normal to the particles).
Equations (C8) and (C9) have the same mathematical struc-
ture as equations (C4) and (C5). We therefore apply the same
integration scheme as for the positional degrees of freedom,
replacing the mass m by the moment of inertia I and the trans-
lational friction γ by the rotational friction γr. For simplicity
we set γr = γσ2. The value of the friction constants does not
affect the equilibrium properties.

Appendix D. Gay–Berne potential

We use the same implementation of the Gay–Berne potential
as that in [44]. The interaction potential between two particles
is

ϕ(r, û1, û2) = 4ϵ(r, û1, û2)

[(
σ0

r−σ(r, û1, û2)+σ0

)12

−
(

σ0

r−σ(r, û1, û2)+σ0

)6
]
.

(D1)

with r the vector joining the centers of mass of the particles,
û1 and û2 unit vectors along the long axes of the particles, and
the functions ϵ(r, û1, û2) and σ(r, û1, û2) are given by

ϵ(r, û1, û2) = ϵ0 (ξ+ξ−)
−1/2

(σ∗(χ ′))
2
, (D2)

σ(r, û1, û2) = σ0 (σ
∗(χ))

−1/2
, (D3)

with

χ=
l2 − 1
l2 + 1

, (D4)

χ ′ =

√
d− 1√
d+ 1

, (D5)

σ∗(ξ) = 1− ξ

2

[
(r+u )

2

ξ+
+

(r−u )
2

ξ−

]
, (D6)

ξ± = 1± ξû1 · û2, (D7)

r±u = r · û1 ± r · û2. (D8)

Here, ξ takes the values χ or χ ′ and the parameters ϵ0 and
σ0 set the energy and the length scales. We select a length-to-
width ratio l= 3, and set the energy ratio between the side-by-
side and the tip-to-tip configurations to d= 5.

Appendix E. Overdamped Brownian dynamics with
orientational degrees of freedom

The equations of motion of particle i are

γvi = f randi (t)−∇iu(rN, ûN)−∇iVext (ri, ûi) , (E1)

γrωi = t randi (t)− R̂i u
(
rN, ûN

)
− R̂iVext (ri, ûi) , (E2)

Here, f randi and t randi are delta-correlated Gaussian random
forces and torques, respectively, with zero means and vari-
ances⟨

f randi (t)f randk (t ′)
⟩
= 2kBTγ1lδikδ(t− t ′), (E3)

⟨
t randi (t)t randk (t ′)

⟩
= 2kBTγr(1l− ûû)δikδ(t− t ′). (E4)

Here, the angles denote an average of the noise, 1l is the iden-
tity matrix, ûû indicates the dyadic product, and δik is the Kro-
necker delta. The angular velocity is

ωi = ûi×
.

ûi . (E5)

Using the vector triple product and the fact that ûi·
.

ûi= 0 due
to ûi · ûi = 1, it follows directly that

.

ûi= ωi× ûi. (E6)

Hence, the equations of motion can be integrated in time using
the standard Euler algorithm via
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ri(t+∆t) = ri(t)+
∆t
γ

[
−∇iu(rN, ûN)−∇iVext (ri, ûi)

]
+ηi(t) (E7)

ûi(t+∆t) = ûi(t)+
∆t
γr

[
−R̂i u

(
rN, ûN

)
− R̂iVext (ri, ûi)

]
× ûi(t)+Γi(t). (E8)

Here, ηi is a Gaussian random displacement with zero mean
and standard deviation

√
2kBT∆t/γ, and

Γi =

√
2kBT∆t

γr
(U1

i ŵ
1
i +U2

i ŵ
2
i ) (E9)

is a random rotation. Here, U1
i and U2

i are Gaussian ran-
dom numbers with zero mean and unit width, and ŵ1

i = ex×
ûi/|ex× ûi|, ŵ2

i = ŵ1
i × ûi, and ûi are orthonormal to each

other. We renormalize ûi after each time step such that it
remains a unit vector.

We arbitrarily relate the rotational friction coefficient to the
translational friction coefficient via γr = γσ2. Also, we use
a single translational friction coefficient γ for displacements
parallel and perpendicular to the main axis of the particle. The
values of the friction coefficients do not play any role in the
equilibrium distribution functions. The Euler integration time
step is ∆t= 10−4τ and we sample every 10−2τ . Although
we have used here a simple Euler scheme to integrate the
equations of motion, it would be useful to extend the recently
developed adaptive Brownian dynamics [70] algorithm to sys-
tems with orientational degrees of freedom to speed up the
simulations.
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