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ABSTRACT
Both polydispersity and the presence of a gravitational field are inherent to essentially any colloidal experiment. While several the-
oretical works have focused on the effect of polydispersity on the bulk phase behavior of a colloidal system, little is known about
the effect of a gravitational field on a polydisperse colloidal suspension. We extend here the sedimentation path theory to study
sedimentation–diffusion–equilibrium of a mass-polydisperse colloidal system: the particles possess different buoyant masses but they are
otherwise identical. The model helps to understand the interplay between gravity and polydispersity on sedimentation experiments. Since the
theory can be applied to any parent distribution of buoyant masses, it can also be used to study the sedimentation of monodisperse colloidal
systems. We find that mass-polydispersity has a strong influence in colloidal systems near density matching for which the bare density of the
colloidal particles equals the solvent density. To illustrate the theory, we study crystallization in sedimentation–diffusion–equilibrium of a
suspension of mass-polydisperse hard spheres.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0129916

I. INTRODUCTION

A certain degree of polydispersity in the size and the shape of
the particles, for example, is inherent to all natural colloids. Even
though modern synthesis techniques allow the preparation of almost
monodisperse colloidal particles,1–4 a small degree of polydispersity
is unavoidable. Understanding bulk phase equilibria in polydisperse
systems is a significant challenge.5 Polydispersity alters the rela-
tive stability between bulk phases.6–10 Phases that are metastable
in the corresponding monodisperse system can become stable due
to polydispersity. Examples are the occurrence of hexatic colum-
nar11 and smectic phases12 in polydisperse discotic liquid crystals,
as well as macrophase separation in diblock copolymer melts.13 The
opposite phenomenon can also occur. For example, crystallization
in a suspension of hard-spheres is suppressed above a terminal
polydispersity.14–16 Also, fractionation into several phases appears
if the degree of polydispersity is high enough.17–19 A smectic phase
of colloidal rods is no longer stable above a terminal polydisper-
sity in the length of the particles.20 Dynamical processes, such as
shear-induced crystallization,21 are also affected by polydispersity.

During drying, a strong stratification occurs in polydisperse colloidal
suspensions,22,23 and the dynamics of large and small particles is
different if the colloidal concentration is large enough.24,25

Sedimentation–diffusion–equilibrium experiments are a pri-
mary tool to investigate bulk phenomena in colloidal suspensions.
However, the effect of the gravitational field on the suspension is far
from trivial26–30 and it needs to be understood in order to draw cor-
rect conclusions about the bulk.31 Gravity adds another level of com-
plexity to the already intricate bulk phenomena of a polydisperse
suspension. To understand the interplay between sedimentation and
polydispersity, we introduce here a mass-polydisperse colloidal sus-
pension: a collection of colloidal particles with the same size and
shape (and also identical interparticle interactions) but with buoyant
masses that follow a continuous distribution. Since the interparti-
cle interactions are identical, mass-polydispersity does not have any
effect in the bulk phase behavior. Hence, our model isolates the
effects of a gravitational field on a polydisperse colloidal system from
the effects that shape- and size-polydispersity generate in bulk.

We formulate a theory for mass-polydisperse colloidal sys-
tems in sedimentation–diffusion–equilibrium. The theory is based
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on sedimentation path theory32,33 that incorporates the effect of
gravity on top of the bulk description of the system. Sedimentation
path theory uses a local equilibrium approximation to describe how
the chemical potential of a sample under gravity changes with the
altitude. So far, sedimentation path theory has been used to study
sedimentation in colloidal binary mixtures.28,31–39 In this work, we
extend sedimentation path theory to mass-polydisperse systems.
Using statistical mechanics, we obtain the exact expression for the
sedimentation path of the mass-polydisperse suspension combin-
ing the individual paths of all particles in the distribution. We use
a model bulk system to illustrate and highlight the key concepts of
the theory, such as the construction of the sedimentation path and
that of the stacking diagram (which is the analog of the bulk phase
diagram in sedimentation). The theory is general and can be applied
to any colloidal system in sedimentation–diffusion–equilibrium.
Moreover, the theory contains the description of a monodisperse
system as a special limit (delta distribution of the buoyant masses).
As a proof of concept, we study sedimentation of a suspension of
mass-polydisperse hard-spheres with different buoyant mass dis-
tributions. We find that mass-polydispersity plays a major role in
systems near density matching. For example, near density matching
the packing fraction and the height of the sample at which crys-
tallization is observed in sedimentation–diffusion–equilibrium are
strongly influenced by the details of the mass distribution.

II. THEORY
A. Bulk

We use classical statistical mechanics to describe the thermody-
namic bulk equilibrium of our mass-polydisperse colloidal system.
The term bulk refers here to an infinitely large system in which
boundary effects can be neglected and that is not subject to any
external field. The particles differ only in their buoyant masses. Since
the buoyant mass does not play any role in bulk, the bulk phe-
nomenology of our model is identical to that of a monocomponent
system in which only one buoyant mass is present. Only when grav-
ity is incorporated into both systems the buoyant mass becomes a
relevant parameter and the behavior of the mass-polydisperse and
the monodisperse colloidal systems will differ from each other.

The total Helmholtz free energy F is the sum of the ideal and
the excess contributions, i.e., F = Fid

+ Fexc. In a mass-polydisperse
system, the free energy is a functional of ρm, the density distribu-
tion of species with buoyant mass m. For simplicity, we work with
a scaled, dimensionless, buoyant mass m = mb/m0, where mb is the
actual buoyant mass of a particle and m0 is a reference buoyant mass.
Sensible choices relate m0 to, e.g., the average buoyant mass of the
distribution or its standard deviation. The concrete definition of m0
is given below in each considered system.

The ideal contribution to the free energy is a functional of ρm
and is given exactly by

F id
[ρm] = kBT ∫ dm ρm(ln(ρm) − 1), (1)

where kB is the Boltzmann’s constant and T is the absolute tem-
perature. Without loss of generality, we measure ρm relative to
the thermal de Broglie wavelengths Λm =

√
2πh̵2/(mbkBT) with

reduced Planck’s constant h. Note that the value of Λm does not play

any role here since altering Λm simply adds a term to the free energy
that is proportional to the total number of particles with buoyant
mass m. Such term can be reinterpreted as a change of the origin of
the chemical potential of the species with buoyant mass m.

The integration over m in Eq. (1) reflects the fact that due to
the mass-polydispersity, the buoyant mass is a continuous variable.
For the sake of simplicity, we omit the positional argument r in
the density distribution as well as its corresponding space integral
that appear in bulk-phases with positional order such as crystalline
phases.

The ideal free energy [Eq. (1)] accounts for the entropy of mix-
ing of our mass-polydisperse system. The overall density across all
species ρ follows directly from the density distribution of buoyant
masses

ρ = ∫ dm ρm. (2)

Since the interparticle interaction is independent of the buoyant
masses of the particles, only the density across all species ρ enters
into the excess (over ideal) free energy. Hence, the excess free energy
functional must satisfy

F exc
[ρm] = F exc

[ρ]. (3)

The grand potential is also a functional of ρm given by

Ω[ρm] = F id
[ρm] + F exc

[ρ] − ∫ dm ρmμm, (4)

where μm is the chemical potential of the species with buoyant mass
m. In equilibrium Ω[ρm] is minimal with respect to the mass-density
distribution, i.e.,

δΩ[ρm]

δρm′
= 0. (5)

The Euler–Lagrange equation associated with Eq. (5) (see
derivation in the Appendix) reads

ln(ρm) − ln(ρ) + βμ − βμm = 0, (6)

where μ is the chemical potential of a monodisperse system with
overall density ρ [see Eq. (2)]. Hence, it follows from Eq. (6) that
the density of particles with buoyant mass m can be written as

ρm = ρeβ(μm−μ). (7)

Integrating Eq. (7) over m on both sides, and using Eq. (2) on the
left-hand side, leads to

ρ = ρ∫ dm eβ(μm−μ). (8)

Since ρ ≠ 0, we obtain

eβμ
= ∫ dm eβμm , (9)

which constitutes an exact analytic expression for the chemical
potential of the monodisperse bulk system

μ = kBT ln(∫ dm eβμm), (10)
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in terms of the chemical potentials of the individual species μm in the
mass-polydisperse system. In a monodisperse system, there exists
only a single species and Eq. (10) holds trivially.

B. Particle model
To proceed, we need the bulk equation of state (EOS) of

the monodisperse colloidal system, ρEOS(μ). Given an interparti-
cle interaction potential, several methods can be used to obtain
the corresponding bulk EOS. These include, e.g., density func-
tional theory,40 liquid state integral equation theory,41–43 computer
simulations,44–46 and empirical expressions.47–49 Here, and with the
only purpose of illustrating our theory, we use a model (fabricated)
EOS that contains two phase transitions [see Fig. 1(a)]. Our model
EOS satisfies both the ideal gas limit

lim
μ→−∞

ρEOS(μ) ∼ eβμ (11)

and also the close packing limit characteristic of systems with hard
core interactions

lim
μ→∞

ηEOS(μ)/ηcp = 1, (12)

where ηEOS is the packing fraction (percentage of volume occupied
by the particles) according to the EOS and ηcp is the close packing
fraction. Such EOS could represent, e.g., a lyotropic colloidal system
with two first-order bulk phase transition, say isotropic–nematic and
nematic–smectic.

Apart from the model EOS, we also illustrate and validate the
theory by studying sedimentation of a suspension of hard-spheres.
We use the analytical EOS proposed by Hall,50 which describes the
liquid (L) and solid crystalline (S) phases of a hard sphere system.

FIG. 1. Packing fraction ηEOS relative to close packing ηcp as a function of the
scaled chemical potential βμ for (a) our model equation of state and (b) the Hall
equation of state50 for hard spheres. Our model EOS (a) contains three different
bulk phases named A, B, and C that could correspond to, e.g., the isotropic, the
nematic, and the smectic phases of a lyotropic liquid crystal. The Hall EOS (b)
describes the liquid (L) and the solid crystalline (S) phases of a hard-sphere
system. The vertical dotted lines indicate the chemical potentials of the different
bulk phase transitions. Without loss of generality, we have translated the origin of
chemical potential such that it coincides with the chemical potential of (a) the A–B
and (b) the L–S transitions.

The Hall EOS was originally formulated using the compressibility
factor as a function of the density. Following Ref. 51, we numerically
integrate the analytical Hall EOS to obtain the chemical potential as a
function of the density [see Fig. 1(b) for a graphical representation].
It is sufficient to fix ρEOS(μ) up to an arbitrary additive constant in
μ. Hence, for convenience, we choose μ = 0 as the chemical potential
at the liquid–solid first order phase transition.

C. Sedimentation
To incorporate gravity into our theory, we extend sedimen-

tation path theory32,52 as formulated for finite height samples31,33

to include mass-polydispersity. As often done in colloidal sedi-
mentation, we assume that all horizontal slices of a sample in
sedimentation–diffusion–equilibrium can be described as a bulk
equilibrium state and also that they are independent of each
other. This local-equilibrium approximation is justified if the cor-
relation lengths are small compared to the gravitational lengths
ξm = kBT/(mb g), which is the case in many colloidal systems. Here,
g is the acceleration of gravity.

We work in units of the thermal energy kBT, the gravitational
constant g, and the reference mass m0 for ease of comparability
between different systems. Using m0, we define a reference gravita-
tional length ξ = kBT/(m0 g), which acts as our fundamental length
scale.

We treat the slices for each elevation z as a bulk system with
local chemical potentials for each species μm given by

μm(z) = μ0
m −mbgz. (13)

Here, μ0
m is the chemical potential of the species with buoyant mass

m at elevation z = 0. The set of constant offsets μ0
m in μm(z) is

a priori unknown and must be determined via an iterative numerical
procedure to match the prescribed mass-resolved density distribu-
tion ρm. Returning to the discussion about the thermal wavelengths,
altering the value of Λm would only introduce a constant term
ln(Λm) in Eq. (6) that can be reabsorbed in Eq. (13) as a shift of the
chemical potential μm via the offset μ0

m. The offsets μ0
m depend there-

fore on the choice of Λm. However, the sedimentation profiles ρm(z)
remain unchanged, since μ0

m are determined to match the prescribed
density distribution.

Equation (13) is the sedimentation path31–33,52 of the species
with buoyant mass m. It hence describes how the chemical poten-
tial of each species varies linearly with z in the range 0 ≤ z ≤ h, with
h the sample height. The local chemical potential for each species
either decreases (mb > 0) or increases (mb < 0) with the elevation z,
depending on the sign of the buoyant mass.

The sedimentation path of each species μm(z) is just a straight
line [see Fig. 2(a)] as in the case of monodisperse systems. Next, we
combine all paths at each elevation z to obtain an effective chemical
potential μeff(z). Inserting μm(z) in Eq. (13) into Eq. (10) yields the
sedimentation path of a mass-polydisperse system

μ eff(z) = kBT ln(∫ dm eβ(μ0
m−mbgz)

). (14)

Equation (14), which has the form of a LogSumExp func-
tion, describes how the effective chemical potential of the
mass-polydisperse system varies vertically along the sample in
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FIG. 2. (a) Local chemical potentials βμm(z) as a function of the elevation z scaled with the sample height h. Each sedimentation path varies linearly with z and it is
colored according to the buoyant mass of the species m (top-left color bar). (b) Effective chemical potential βμeff(z) as a function of the scaled elevation z/h. The non-linear
sedimentation path of the mass-polydisperse system (b) is the result of combining the sedimentation paths of each species (a) according to the LogSumExp structure in
Eq. (14). The sedimentation paths are defined in the interval 0 ≤ z ≤ h, and the sample height is h = 2ξ. (c) Imposed parent distribution fP(m) and plots of the parent
distribution scaled with several values of the average packing fraction η (see color bar). The imposed fP(m) and the value of η in (c) fix the offsets βμ0

m for all buoyant
masses m, which are shown in panel (d). The pink arrows illustrate the iterative procedure to find the effective sedimentation path: for a fixed distribution fP(m) and packing
fraction η (c), we give an initial guess for the offsets μ0

m (d), calculate the individual paths μm(z) (a), and combine them to get the effective path μeff(z) (b). Using the
effective path, we obtain the density profile and then the resulting distribution of particles and the average packing fraction. With this information, we readjust the offsets
μ0

m until the output distribution and packing fraction are the desired ones.

sedimentation–diffusion–equilibrium. We give an example of
μeff(z) in Fig. 2(b). The sedimentation path is obtained from the
set of μm(z) in Fig. 2(a) via Eq. (14). The sedimentation path is
no longer a straight line even though the individual paths for each
species are lines. Since (i) the logarithm is a concave function, (ii)
the scalars exp(βμ0

m) are positive, and (iii) the exponential is a
convex function, it follows that μeff(z), as given by Eq. (14), is a
convex function of the elevation z. This is a strong constraint on
the possible shapes of μeff(z). It means that (i) μeff(z) can have only
one minimum and also that (ii) the local maxima of μeff(z) in the
interval 0 ≤ z ≤ h are either z = 0, z = h, or both of them. As we dis-
cuss below, the extrema of the path μeff(z) are important because
they determine the layers of different bulk phases that form in the
sample.

Via the equation of state ρEOS(μ) for the bulk density, we then
obtain the density profile across all species

ρ(z) = ρEOS(μ eff(z)) (15)

at elevation z from Eq. (14).
The density of species with buoyant mass m at elevation

z follows then by inserting Eqs. (13)–(15) into Eq. (7),

ρm(z) = ρ(z)eβ(μ0
m−mbgz−μ eff(z)). (16)

The average density of particles with buoyant mass m in a
sample with height h is then given by

ρm =
1
h∫

h

0
dz ρm(z). (17)

The value of ρm is also the density of particles with buoyant mass
m in the initial distribution, i.e., before the particles sedimented and
equilibrated.

The average packing fraction is

η =
v0

h ∫
h

0
dz ρ(z), (18)

where v0 is the particle volume.
The parent distribution, which gives the overall probability of

finding a particle with buoyant mass m anywhere in the sample, can
be obtained as

f P(m) =
ρm

∫dm ρm
=

A
N∫

h

0
dz ρm(z), (19)

with N = hA ∫dm ρm = A ∫dm∫
h

0 dz ρm(z) the total number of par-
ticles, and A being the area of a cross section of the sample. Both
η and fP(m) are directly comparable with experimental results,
since η is the concentration of particles in the stock solution (before
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sedimentation) and fP(m) describes the mass-polydispersity of the
particles, normalized by the total concentration.

From the definitions (18) and (19), we can get back the average
density of specie m via

ρm =
η
v0

f P(m). (20)

To obtain the sedimentation–diffusion–equilibrium of a mass-
polydisperse colloidal system, we start prescribing the sample height
h, the average packing fraction of the sample η, and the parent dis-
tribution fP(m). An illustrative parent distribution that contains
particles with both positive and negative buoyant masses is shown
in Fig. 2(c). These initial conditions are sufficient to find the as
yet undetermined offsets on the chemical potential for each species
μ0

m [see Eq. (13)]. We discretize fP(m) and then numerically deter-
mine μ0

m via a least square algorithm that iteratively solves for the
prescribed ηf P(m) in a sample of height h. With the offsets μ0

m, we
calculate the corresponding μeff(z) via Eq. (14). Next, we obtain ρ(z)
and ρm(z) via Eqs. (15) and (16), respectively. The profiles ρ(z) and
ρm(z) determine both η and fP(m) via Eqs. (18) and (19), respec-
tively. The least square algorithm finds then the offsets that minimize
the difference to the prescribed (target) values of η and fP(m).

For example, we show in Fig. 2(d) the offsets μ0
m corresponding

to the distribution prescribed in Fig. 2(c). We discretize in m, and
hence the number of input variables ρm and unknown variables μ0

m
is the same. The self-consistency problem of finding μ0

m is there-
fore well defined. The set of sedimentation paths μm(z) in Fig. 2(a)
are obtained with the offsets calculated in Fig. 2(d). The effective
sedimentation path μeff(z) [see Fig. 2(b)] of the mass-polydisperse
system follows then from the set of paths for each species μm(z).

The sedimentation path of the mass-polydisperse system deter-
mines the stacking sequence, i.e., the set of layers of bulk phases that
are observed in the sample under gravity. Every time the path crosses
the coexistence chemical potential of a bulk transition, an interface
between the coexisting phases appears in the cuvette. By looking at
the crossings between the sedimentation path and the bulk binodals,
we determine the stacking sequence and the position of the inter-
faces between stacks. For example, the sequence corresponding to
the path in Fig. 2(b) is BABC (from top to bottom of the sample).

Extended Gibbs phase rule. Given the convexity properties
of the sedimentation path, recall our discussion following Eq. (14),
we conclude that the maximum number of layers that can appear
in a sedimented sample of a mass-polydisperse system is 2nb − 1,
with nb the number of different stable phases in bulk. This corre-
sponds to the stacking sequence of a mass-polydisperse suspension
with positive and negative buoyant masses in which all phases occur
repeatedly except the middle layer, which corresponds to the bulk
phase stable at low chemical potential. In our model EOS, the stack-
ing sequence with the maximum number of layers is CBABC, for
which the sedimentation path is similar to the one in Fig. 2(b) but
extended such that it reenters the C region at high elevations.

If the parent distribution contains only buoyant masses of the
same sign, the maximum number of layers in a stacking sequence is
simply nb, the number of stable bulk phases.

D. Stacking diagram
Different sedimentation paths can give rise to distinct stacking

sequences. The set of all possible stacking sequences can be repre-

sented in a stacking diagram. In binary mixtures, the sedimentation
paths of both species vary linearly with z. In mass polydisperse sys-
tems, we average the linear local chemical potentials μm(z) [Eq. (13)]
of all species together, according to Eq. (14), and obtain a non-linear
effective chemical potential μeff(z). Even though the sedimentation
paths are no longer straight lines, the same ideas as in the case
of binary mixtures31,32 apply for the construction of the stacking
diagram. In short, we must find all the sedimentation paths that con-
stitute a boundary between two or more stacking sequences in the
stacking diagram. Examples of such paths are shown in Fig. 3(a). The
boundary paths are the sedimentation paths μeff(z) that either end
[paths 1 and 4 in Fig. 3(a)], start (paths 2 and 5), or are tangent (paths
3 and 6) to a bulk binodal. These paths are a boundary between
two or more stacking sequences since an infinitesimal change of
the path, in general, alters the stacking sequence. Without gravity
(i.e., in bulk), the mass-polydisperse system behaves like a mono-
component system, since the interparticle interaction potential is
independent of the buoyant mass. Thus, in bulk, there is only a sin-
gle relevant chemical potential. In the chemical potential vs height
plane, the bulk transitions are simply horizontal lines independent of
z [see Fig. 3(a)]. Hence, given that the sedimentation path is con-
vex, a path tangent to a bulk binodal is also a path for which the
minimum coincides with the chemical potential of the bulk transi-
tion, e.g., paths 3 and 6 in Fig. 3(a). For other types of bulk phase
coexistence, such as critical and triple points, the procedure to find
the boundary paths is the same as the one just described for a bulk
binodal.

Next, we find the total density profile ρ(z) and the average
packing fraction η corresponding to each of the boundary sedi-
mentation paths via Eqs. (15) and (18), respectively. To obtain the
full stacking diagram, we repeat the procedure for every sample
height h ranging from zero to the desired maximal sample height.
This provide us with the stacking diagram in the (experimentally
relevant) plane of average packing fraction η and sample height
h [see Fig. 3(b)]. Each point in the stacking diagram represents one
sedimentation path and it hence represents one specific sample in
sedimentation–diffusion–equilibrium.

For each bulk phase transition, there can be at most three
boundary lines in the stacking diagram, so-called sedimentation
binodals.31–33 The sedimentation binodals corresponding to the
paths that either start or end at the binodal are always present inde-
pendently of the parent distribution and the sample height. On the
other hand, the sedimentation binodal corresponding to paths tan-
gent to the bulk transition appears if and only if the sedimentation
path presents a minimum at intermediate values of z. It follows from
Eq. (14) that a minimum in μeff(z) not located at the bottom (z ≠ 0)
or the top (z ≠ h) of the sample can appear only if the parent distri-
bution contains both positive and negative buoyant masses. Even in
that case, there might be sample heights for which the path does not
have a minimum at intermediate elevations.

In our illustrative example, there are two bulk phase transition
(A–B and B–C) [see Fig. 1(a)] and the parent distribution is made of
particles with positive and negative buoyant masses [see Fig. 2(c)].
The stacking diagram contains six sedimentation binodals [see
Fig. 3(b)]. For sample heights h/ξ ≲ 0.4, only two types of sedimenta-
tion binodals can be observed. In this low height regime, we cannot
find sedimentation paths tangent to the binodal since μeff(z) does
not have a minimum at intermediate elevations 0 < z < h.
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FIG. 3. (a) Sedimentation paths in the plane of effective chemical potential βμeff as
a function of the elevation z/h for samples of height h = 1.7ξ and a parent distri-
bution like in Fig. 2(c). The coexistence chemical potentials for the A–B (μcoex = 0)
and for the B–C (βμcoex = 0.25) bulk transitions are indicated by solid black hor-
izontal lines. There are six sedimentation paths labeled from 1 to 6. The average
packing fraction η of each sample is such that the corresponding path either ends
at (solid paths 1 and 4), starts at (dashed paths 2 and 5), or is tangent to (dotted
paths 3 and 6) a bulk binodal (horizontal lines). The points where the paths touch
the coexistence bulk chemical potential are marked by solid circles. (b) Stack-
ing diagram in the plane of average packing fraction η/η cp and sample height
h/ξ for the model EOS in Fig. 1(a) and parent distribution as in Fig. 2(c). The
position of the six boundary sedimentation paths in (a) is marked in (b) using the
corresponding labels 1–6. The sedimentation binodals of paths that end, start, and
are tangent to the bulk binodals are indicated with solid, dashed, and dotted lines,
respectively. The stacking sequences are labeled from the top of the sample to
the bottom. Each point in the stacking diagram is a sample in sedimentation. The
sketch shows the stacking sequence BABC and relative layer thicknesses of the
sample with η/η cp = 0.45 and h/ξ = 3.5 (indicated by a black circle).

Within our local equilibrium approximation, in the limit h→ 0,
the sedimentation path reduces to a point and hence the stacking
diagram reduces to the bulk phase diagram. In a real system, confine-
ment and surface effects, such as wetting and layering, will become
relevant in the limit of short sample heights.

Mass-monodisperse system. Our method to construct the
stacking diagram for mass-polydisperse systems contains as a lim-
iting case the monodisperse system. In a monodisperse system, all
particles possess the same buoyant mass. Hence, Eq. (14) reduces to

μ eff(z) = μm(z) = μ0
m −mbgz. (21)

Thus, as expected, the sedimentation path of a monodisperse system
is the segment of a line, linear in z. In the stacking diagram, only
the sedimentation binodals of paths that start, i.e., μeff(h) = μcoex, or
end, i.e., μeff(0) = μcoex, at the bulk binodal (given by μcoex) appear.
The sedimentation path of a monodisperse system can never have a
minimum at intermediate elevations.

III. RESULTS
We next apply our theory to the arguably best studied colloidal

system to date: hard spheres. We study sedimentation of a mass-
polydisperse hard sphere system using the Hall equation of state,50

represented in the plane of μ and η in Fig. 1(b), to describe the bulk
of the system.

A. Species-resolved probability distributions
in mass-polydisperse systems

The imposed parent distribution of the mass-polydisperse
system, fP(m), describes the probability of finding a particle with
a certain buoyant mass m anywhere in the system. Experimentally,
this corresponds to the stock solution. After letting the dispersion
settle under gravity to reach sedimentation–diffusion–equilibrium,
a height-dependent density profile develops. The overall proba-
bility distribution integrated over the whole sample is still fP(m)
since particles are conserved. However, at each horizontal slice, the
mass composition is generally different from fP(m). One expects,
e.g., heavier particles to concentrate next to the bottom of the sample
as compared to lighter particles. Sedimentation path theory allows
us to carry out a detailed study of the mass distribution along the
sample.

We study first a mass-polydisperse dispersion of hard spheres
with only positive buoyant mass. The parent distribution is a Gaus-
sian centered around m = 1 and cut at m = 0 and m = 2, i.e., only
buoyant masses in the range 0 ≤ m ≤ 2 are allowed. The mean pack-
ing fraction is η/η cp = 0.6. Under gravity, the sample develops the
stacking sequence: top liquid and bottom solid (LS). We show the
probability f (m, z) of finding a particle with buoyant mass m at ele-
vation z in Fig. 4(a). The probability distribution fm(z) for a fixed
buoyant mass m and resolved in z, as well as the probability distri-
bution fz(m) for a fixed z resolved in m are shown in Figs. 4(b) and
4(c), respectively. The distributions fm(z) and fz(m) correspond to
vertical and horizontal slices of the full distribution f (m, z), respec-
tively. The distributions fz(m) are shifted and skewed [Fig. 4(c)] as
compared to the parent distribution fP(m) (black dashed line) that is
symmetric with respect to m = 1. As expected, heavier particles are
more frequently found at the bottom of the sample. This becomes
more apparent when we look at fm(z) [Fig. 4(b)]. There is a clear
depletion of lighter particles from the bottom of the sample. Interest-
ingly, the probability distribution along z of particles with m ≲ 1.01
is not monotonically increasing toward the bottom of the sample,
but has a maximum up to 0.5h above the bottom. Lighter particles
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FIG. 4. (a) Probability of finding a particle with buoyant mass m at elevation z relative to the sample height h in a hard sphere system modeled using the Hall EOS. The
light contour lines in (a) indicate points (m, z) at which the chemical potential μm(z) [see Eq. (13)] is equal to the bulk liquid–solid coexistence chemical potential. The
white arrow indicates the position of the liquid (L)–solid crystalline (S) interface. (b) Vertical slices of panel (a) for fixed buoyant mass m given by the colorbar. The inset
is a sketch of the sample. (c) Horizontal slices of panel (a) for fixed elevation z given by the colorbar. The imposed parent distribution fP(m) is a Gaussian with standard
deviation 0.4 and centered around m = 1, i.e., the reference buoyant mass m0 is the mean of the parent distribution (see black dashed line). The sample has a height
h = 80ξ with gravitational length ξ and a packing fraction η = 0.6ηcp, relative to the close packing fraction ηcp. Panels (d)–(f) are the same as panels (a)–(c), but for a
Gaussian with standard deviation 0.6 centered around 0.03 as the parent distribution fP(m) (black dashed line), slightly favoring particles with positive buoyant mass,
sample height h = 120ξ, and packing fraction η = 0.7ηcp. The crosses in (b) and (e) indicate the position of the local maxima in the probability distribution fm(z) along
elevation z for fixed buoyant mass m.

are displaced by heavier particles from the bottom as a result of a
balance between only two contributions: the gravitational energy
and the entropy of mixing. The excess free energy does not play a
role in determining the relative position of the particles according to
their buoyant masses. Interchanging heavier for lighter particles and
vice versa does not alter the overall density, and thus the excess free
energy Fexc

[ρ], which is a functional of only the overall density ρ, is
not affected.

We also show in Figs. 4(d)–4(f), the mass- and height-resolved
probability distributions of a sample with a parent distribution
containing both positive and negative buoyant masses. The par-
ent distribution is a Gaussian centered around m = 0.03 and cut at
m = ±1.9. The initial packing fraction is η/η cp = 0.7 and the stack-
ing sequence is SLS. The liquid–solid interfaces occur at elevations
z/h = 0.25 and 0.8 and are visible as discontinuities of the distribu-
tion functions. On the top (bottom) of the sample, particles with
negative (positive) buoyant masses are more frequently found. This
is visible in Fig. 4(f) as a shift toward negative or positive buoy-
ant masses of the distributions belonging to the solid crystalline
layers.

B. Mass-polydispersity close to density matching
In density matching colloidal experiments, the mass density of

the colloidal particles is very close to the mass density of the sol-
vent. If the density match between particle and solvent is perfect,
the buoyant mass of the colloids vanishes, and therefore gravity has
no effect on the sample. This, in principle, would allow to carry out
a direct comparison between bulk phenomena and sedimentation
experiments. In practice, however, preparing experimentally a per-
fect density matching solution is challenging. Density matching is
typically achieved by combining solvents with different mass den-
sities in the correct proportions to match the mass density of the
particles.53–56 To sterically stabilize the colloidal particles, they are
frequently coated with a polymer layer of a different density than
that of the particle core.57–61 Due to the polydisperse nature of most
colloidal systems, the effective particle density (including both the
core and the coating layer) can vary between the particles. As a
result, not all the particles in the solution can have neutral buoy-
ancy. The buoyant mass of the particles falls within a range roughly
centered around neutral buoyancy. In general, there will be parti-
cles that have either slightly positive or slightly negative buoyant
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masses. We will see here that small deviations from density matching
can have a strong effect on sedimentation–diffusion–equilibrium
experiments.

We model a system close to density matching by a parent Gaus-
sian distribution fP(m) roughly centered around a buoyant mass
m = 0, as shown in Fig. 5(a). We study four different cases, with
the mean of the Gaussian m̄ slightly shifted in the range of ±0.02,
which is ∼10% of their standard deviations. The distributions are cut
at m = ±0.95 around their respective mean.

The stacking diagram for the case m̄ = 0 is shown in Fig. 5(b).
Near density matching, the sedimentation paths are rather hori-
zontal and sensitive to the precise form of the parent distribution.
Hence, the small deviations between the (imposed) target and the
(actual) numerical parent distributions that arise in the iterative pro-
cedure due to numerical inaccuracies can have a noticeable effect.
This is the reason behind the scattered data points (symbols) in the
sedimentation binodals of Fig. 5(b). With a symmetrical parent dis-
tribution around m = 0 (i.e., m̄ = 0) neither particles with positive
nor with negative buoyant mass are favored. Thus, only symmet-
ric stacking sequences (with respect to the midpoint of the sample
z = h/2) occur, namely L, S, and SLS. Asymmetric sequences, such
as LS or SL, do not appear.

The situation is different for m̄ = −0.02, where particles
with negative buoyant mass that cream up are predominant [see
Fig. 5(c)]. Consequently, we also observe the stacking sequence SL,
with the denser, solid phase, on top of the sample.

In Figs. 5(d) and 5(e), we show the stacking diagram for the
remaining cases m̄ = 0.01 and 0.02, respectively. For comparison,
we show always the sedimentation binodals of the buoyant neutral
suspension with m̄ = 0. The position of the sedimentation binodals
for the cases m̄ = −0.02 and 0.02 are identical, but the associated
stacking sequences are inverted. This was expected, since chang-
ing from m̄ = −0.02 to 0.02 is equivalent to inverting the direction
of gravity and thus interchanging the meaning of top and bottom
of the sample. This is also the reason why we observe the stacking
sequence LS in Fig. 5(e) in the region occupied by SL in Fig. 5(c). The
case m̄ = 0.01 shows the same characteristics as m̄ = 0.02, but with
the position of the sedimentation binodals roughly rescaled in the
h/ξ axis by a factor of 1/2, which is the ratio between the mean
of the corresponding parent distributions. Most notable, there is a
qualitative difference between the case m̄ = 0 and any other par-
ent distribution considered, namely the lack of asymmetric stacking
sequences, such as LS and SL. Mass-polydispersity therefore plays
an important role in colloidal suspensions close to density matching
and even small deviation from density matching can have drastic
effects on the stacking diagram.

C. Mass-polydispersity away from density matching
Not all types of parent distributions are as sensitive to mass-

polydispersity as those representing a system near density matching.
In many cases, the stacking diagram is robust against perturbations
of the parent distribution. To show this, we construct here four
classes of parent distributions and calculate the corresponding sed-
imentation paths. The sedimentation paths are quite similar within
each class. We hence can conclude that the corresponding stacking
diagrams are also alike. Recall that the stacking diagram is con-
structed from the set of special paths, μeff(z), that either start at, end

FIG. 5. (a) Four parent fP Gaussian distributions with slightly shifted mean m̄ in the
range 0 ± 0.02, as indicated. The standard deviation is 0.2 in all cases, and the dis-
tributions are cut at m = ±0.95 around their respective mean. The corresponding
stacking diagrams for a mass-polydisperse system of hard spheres in the plane
of average packing fraction η (relative to close packing ηcp) and sample height
h (relative to the gravitational length ξ) are shown in (b) for the parent distributions
with m̄ = 0, in (c) for m̄ = −0.02, in (d) for m̄ = 0.01, and in (e) for m̄ = 0.02. The
sedimentation binodals of paths that end, start, and are tangent to the bulk bin-
odals are indicated with solid, dashed, and dotted lines, respectively. The symbols
are the data points. The sedimentation binodals of the case m̄ = 0 are shown for
reference in all the stacking stacking diagrams. Note that for the case m̄ = 0 the
sedimentation binodals of paths that either start or end at the bulk transition coin-
cide since the parent distribution is symmetrical around m = 0. The bulk system
exhibits liquid (L) and solid crystalline (S) phases. The stacking sequences are
labeled from the top to the bottom of the sample.

at, or are tangent to the bulk binodal (see Fig. 3). Thus, if two sys-
tems share similar paths for a range of packing fractions and sample
heights, the stacking diagrams will also be similar.

The four classes of parent distributions and the correspond-
ing sedimentation paths are shown in Fig. 6. We construct several
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FIG. 6. Families of parent distributions fP(m) in the form of (a) the sum of
two Gaussians that move apart symmetrically around the buoyant mass m = 1,
(b) Gaussian with increasing standard deviation from 0.1 to 0.5, (c) χ2-distribution
with the degree of freedom increasing from 3 to 13, and (d) sum of two Gaus-
sians with mean values m = −1 and m = 1 and increasing standard deviation
from 0.1 to 0.5. The distributions in (c) have mean 0.6 and standard deviation
1. The effective sedimentation paths βμeff as a function of the scaled elevation
z/h corresponding to the families of distributions in panels (a)–(d) are shown in
panels (e)–(h), respectively. In all cases, we use the Hall EOS for hard spheres,
the packing fraction is η/η cp = 0.5, and the sample height is h/ξ = 80. The
dashed lines in panels (e)–(g) are the linear trends of the corresponding sedimen-
tation paths (displaced vertically for a better visualization). The slopes (indicated
next to each dashed line) coincide in all three cases with the mean mass of the
corresponding family of distributions, which are 1 (a), 1 (b), and 0.6 (c).

distributions within each class by varying a control parameter.
In Fig. 6(a), we increase the mass-polydispersity by interpolat-
ing between unimodal and bimodal Gaussian distributions. In
Fig. 6(b), we increase the variance of a Gaussian distribution. In

Fig. 6(c), we vary the skewness of the distribution while keeping
the first and the second moment unaltered. In all cases, the dis-
tributions contain only positive masses and varying the control
parameter has little effect on the sedimentation paths, even when
we, e.g., drastically increase the degree of mass-polydispersity (sec-
ond moment of the distribution). The corresponding sedimentation
paths, shown in Fig. 6(e)–(g), deviate only slightly from a straight
line with a slope given by the mean buoyant mass of the distribution.
Hence, in sedimentation–diffusion–equilibrium, mass-polydisperse
systems in which only positive or negative buoyant masses are
present are similar to a reference monodisperse system. [Recall that
μ(z) = μ0 −mb gz for a monodisperse system.] The monodisperse
reference system has the same particle mass as the mean of the mass
distribution of the mass-polydisperse system.

We also consider a class of parent distributions with both posi-
tive and negative buoyant masses, where we increase the variance of
a bimodal distribution [see Fig. 6(d)]. Due to the presence of buoy-
ant masses with different sign, the suspension does not behave like a
monodisperse system under gravity, and hence μeff(z) is not close to
a straight line [see Fig. 6(h)]. Still the increase in the degree of mass-
polydispersity does not affect the behavior of the system strongly
since the paths do not deviate much from each other.

IV. SUMMARY AND CONCLUSIONS
Sedimentation path theory32,33 was initially developed to study

sedimentation–diffusion–equilibrium of binary mixtures. The the-
ory describes systems that are in equilibrium under the presence
of a gravitational field and therefore cannot be used to describe
non-equilibrium phenomena, such as drying,62,63 or systems that get
arrested due to, e.g., the formation of glasses58 and non-equilibrium
gels.64 Depending, among other factors, on the buoyant mass of
the colloids, the experimental equilibration times can vary from a
few hours to several months.28 We have extended here sedimenta-
tion path theory to deal with mass-polydisperse colloidal systems,
i.e., the particles are identical except for the value of their buoy-
ant masses. We derived an exact equation for the sedimentation
path of the mass-polydisperse system [Eq. (14)] that combines all
the sedimentation paths of the individual species. The resulting
equation has the structure of the LogSumExp function, often used
in machine learning algorithms for its smooth approximation to
the maximum function.65 Adding mass-polydispersity to a binary
mixture is, in principle, a straightforward extension of the present
work.

In bulk, mass-polydispersity has no effect on the phase behav-
ior. Hence, our mass-polydisperse model allows us to highlight
the interplay between polydispersity and gravity, eliminating by
construction the complex effects that shape-polydispersity and
size-polydispersity generates in bulk.5,7–9,12,14,16,19,20,66 Beyond its
fundamental interest, a mass-polydisperse system can be specif-
ically realized experimentally by, e.g., synthesizing core–shell
nanoparticles67–70 with the same overall size but different relative
size between the core and the shell. In addition, if the degree of
size-polydispersity is small, mass-polydispersity is likely the domi-
nant effect in sedimentation–diffusion–equilibrium. This is particu-
larly relevant in colloidal suspensions near density matching53–56 in
which mass-polydispersity has a big effect on the stacking diagram
under gravity: two mass distributions that are only slightly different
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can give rise to topologically different stacking diagrams containing
different stacking sequences.

Granular media is a related system in which the particles can
be polydisperse.71–74 It would be interesting to analyze the effects
of mass-polydispersity in granular systems. For example, phase sep-
aration induced by mass-polydispersity might occur in vibrated
monolayers75,76 of granular systems.

Despite the relevance of the hard-sphere model in soft matter,
there are only a few experiments on the sedimentation–diffusion–
equilibrium of (quasi) hard-spheres. Moreover, colloids with a rela-
tively large buoyant mass are often used57,59 and the sample height is
not used as a control parameter. A systematic experimental study of
the stacking diagram of hard spheres would be valuable.

In bulk, it is sometimes possible to approximate the free
energy of a polydisperse system using only a finite number of
moments of the parent distribution.77,78 In a similar way, using the
first moment of the parent distribution, it is possible to obtain a
reasonable approximation for the effective sedimentation path of
the mass-polydisperse system and hence an approximated stacking
diagram.

Polydispersity in the size of the particles affects the bulk
behavior of the suspension and, therefore, also the sedimentation–
diffusion–equilibrium. For example, van der Kooij et al. studied
the sedimentation of polydisperse colloidal platelets.26 Their par-
ticle distribution contained platelets of different sizes but only
positive buoyant masses. By changing the overall packing fraction,
they found a striking inversion of the stacking sequence from the
expected top isotropic and bottom nematic, IN, to top nematic
and bottom isotropic, NI. Due to the geometric properties of the
sedimentation path of a mass-polydisperse system, such inversion
of the sequence cannot occur in a mass-polydisperse system that
contains particles with only positive (or only negative) buoyant
masses. As correctly pointed out in Ref. 26, the inversion must there-
fore be a consequence of the interplay between gravity- and size-
polydispersity. Sedimentation path theory could be applied on top
of a bulk theory for size-polydisperse systems in order to describe
such effects.
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APPENDIX: EULER–LAGRANGE EQUATION

Carrying out the functional derivative with respect to ρm in
Eq. (5) for the ideal free energy contribution to Ω yields

δF id
[ρm]

δρm′
= kBT ln(ρm). (A1)

For the excess contribution, we find

δF exc
[ρ]

δρm′
=

δF exc
[ρ]

δρ
, (A2)

where we have used the functional chain-rule and also the definition
of the overall density [Eq. (2)] to calculate the functional derivative

δρ
δρm
=

δ
δρm
∫ dm′ρm′ = ∫ dm′δ(m −m′) = 1. (A3)

Hence, introducing the excess chemical potential μexc = δFexc
[ρ]/δρ

in Eq. (A2), it follows

δF exc
[ρm]

δρm′
= μ exc = μ − kBT ln(ρ). (A4)

Here, μ = μexc + kBT ln(ρ) is the total chemical potential, including
the ideal contribution kBT ln(ρ), of the corresponding monodis-
perse system with the same overall density ρ as the mass-
polydisperse system.

For the last contribution to Ω[ρm] in Eq. (4), we get

δ
δρm
∫ dm′ρm′μm′ = μm. (A5)

Hence, adding Eqs. (A1), (A4), and (A5) according to the min-
imization principle [Eq. (5)] yields the Euler–Lagrange equation
shown in Eq. (6).
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