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Inhomogeneities in the velocity field of a moving fluid are dampened by the inherent viscous behavior of
the system. Both bulk and shear effects, related to the divergence and the curl of the velocity field, are
relevant. On molecular time scales, beyond the Navier-Stokes description, memory plays an important role.
Using molecular and overdamped Brownian dynamics many-body simulations, we demonstrate that
analogous viscous effects act on the acceleration field. This acceleration viscous behavior is associated with
the divergence and the curl of the acceleration field, and it can be quantitatively described using simple
exponentially decaying memory kernels. The simultaneous use of velocity and acceleration fields enables
the description of fast dynamics on molecular scales.
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The viscous force determines the resistance of a moving
fluid to change the magnitude and the direction of the flow.
Such a viscous response, originated by the interparticle
interactions, is relevant in, e.g., lubrication [1], protein
dynamics in biological solvents [2,3], viscotaxis [4,5],
magnetic [6] and quantum [7] fluids, lava flows [8], cardio-
vascular events [9,10], food manufacturing [11], and cosmo-
logical models [12,13]. Viscous effects are associated with
inhomogeneities in the velocity field of the fluid. The viscous
force fvisðr; tÞ experienced by a particle of a fluid at position r
and time t contains bulk fbðr; tÞ and shear fsðr; tÞ contribu-
tions, i.e., fvis ¼ fb þ fs. These contributions are associated
with the divergence∇ · v (bulk) and the curl∇ × v (shear) of
the velocity field vðr; tÞ, respectively. Specifically, fvis in the
Navier-Stokes [14] equations is

ρfvis ¼ ηb∇∇ · v − ηs∇ × ð∇ × vÞ; ð1Þ

where ρðr; tÞ is the density profile and ηα with α ¼ b, s are
transport coefficients known as bulk and shear viscosities.
Here, we demonstrate the occurrence in simple fluids

of analog viscous contributions, but generated by the
divergence and the curl of the acceleration field aðr; tÞ.
We use custom flow [15,16] to design specific flows
(driven by external forces) in which we can unambiguously
single out the acceleration contribution of the viscous force.
We consider inhomogeneous and rapidly changing flows.
Hence, memory effects and inhomogeneities of the density
profile cannot be ignored and need to be included in
Eq. (1). We propose the following expressions for bulk and
shear viscous forces of an inhomogeneous simple fluid,

fbðr; tÞ ¼
1

ρ

Z
t

0

dt0½Kv
bðt − t0Þ∇ðρρ0∇ · v0Þ

þ Ka
bðt − t0Þ∇ðρρ0∇ · a0Þ�; ð2Þ

fsðr; tÞ ¼
−1
ρ

Z
t

0

dt0½Kv
sðt − t0Þ∇ × ðρρ0∇ × v0Þ

þ Ka
s ðt − t0Þ∇ × ðρρ0∇ × a0Þ�; ð3Þ

where we leave out the dependence on r and t, primed
quantities are evaluated at t0, e.g., ρ0 ¼ ρðr; t0Þ, and KΓ

α

(with α ¼ b; s and Γ ¼ v; a) are exponentially decaying
memory kernels

KΓ
αðt − t0Þ ¼ cΓα

τΓα
e−ðt−t0Þ=τΓα ; ð4Þ

with constant amplitudes cΓα and memory times τΓα . The first
terms of Eqs. (2) and (3) are the familiar bulk and shear
viscous forces in the Navier-Stokes equations, Eq. (1), for
flows with inhomogeneous density profiles and with the
addition of a memory kernel. The second terms have
identical structure but replacing v by a and represent
therefore a viscous response generated by an inhomo-
geneous acceleration field. The viscous force in Eq. (1)
with viscosities ηα ¼ cvαρ2 follows from the velocity con-
tributions of Eqs. (2) and (3) by ignoring the effect of both
memory and an inhomogeneous density profile. Our
specific form for fvis arises in power functional theory
[17–19] by retrieving the first terms of an expansion in
acceleration gradients; see additional details in the
Supplemental Material [20].
To demonstrate the occurrence of viscous effects asso-

ciated with the acceleration field, we need to disentangle
the velocity and the acceleration contributions from the
total viscous force. This requires a complete control over
the characteristics of the flow, which we achieve using
custom flow [15,16]. Custom flow uses particle-based
simulations to find numerically the spatially and temporally
resolved external field required to generate the desired
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dynamics of a many-body system. The one-body density
ρðr; tÞ and current Jðr; tÞ ¼ ρðr; tÞvðr; tÞ profiles serve as
input target fields, while the external field fextðr; tÞ that
generates these targets is the output of the method. At each
time, fextðr; tÞ is constructed iteratively. At iteration kþ 1
we add to the external force of the previous iteration k a
term proportional to the difference between the target (J)

and sampled (JðkÞ) currents, i.e., fðkþ1Þ
ext ¼ fðkÞextþα0ðJ−JðkÞÞ.

Here, the parameter α0ðr; tÞ > 0 is chosen to ensure that
the difference between the target and sampled current
fields progressively shrinks. Details about custom flow
are provided in Refs. [15,16] and in the Supplemental
Material [20]. Custom flow is essential here to tailor the
dynamics of the system such that the viscous force can be
(i) easily measured and (ii) unambiguously split into
velocity and acceleration contributions. We use molecular
dynamics (MD) simulations to study a three-dimensional
system of particles of mass m interacting via the short-
ranged and purely repulsive Weeks-Chandler-Andersen
pair potential [21] with length and energy parameters σ

and ϵ, respectively. We work in units of σ, ϵ, and m. Hence,
the unit of time is τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
. We consider two different

flows that represent pure bulk (compressible) and shear
situations. In both flows the one-body current J factorizes
into a (vectorial) spatial part Jr and a (scalar) temporal part
Jt, i.e., Jðr; tÞ ¼ JtðtÞJrðrÞ.
The temporal part is common to both flows; see Fig. 1(a)

and the Supplemental Material [20] for the mathematical
expression. The current increases from the initial time until
t↑ ¼ 1τ, then remains constant (quasisteady state) until
tc ¼ 5τ, decreases until it vanishes at t↓ ¼ 6τ, and it stays
zero afterward. This setup helps to disentangle the velocity
and the acceleration contributions from fvis since v and a
are parallel to each other during the increase of J, but they
are antiparallel during the decrease of J. Both v and a stay
unchanged during the quasisteady state and during the final
evolution toward equilibrium which is useful to character-
ize memory effects.
Both flows are designed to have a stationary one-body

density during the whole time evolution, i.e., _ρðr; tÞ ¼ 0,

FIG. 1. (a) Temporal part of the current Jt vs time t common to the bulk (b) and shear (c) flows. Four times ti with i ¼ 1, 2, 3, and 4 are
highlighted with colored circles. The vertical dotted lines indicate the times t↑; tc, and t↓. (b),(c) The external force fext, density ρ,
velocity v, acceleration a, and viscous force fvis profiles as a function of x for the bulk and shear flows, respectively. To improve the
visualization, the external force has been smoothed by eliminating high-frequency Fourier modes (see details and raw data in the
Supplemental Material [20]). The thin black solid lines are the target fields that coincide (up to numerical accuracy) with the sampled
fields. The color of the profiles indicates the time t1 ¼ 0.5τ (red), t2 ¼ 4τ (blue), t3 ¼ 5.5τ (yellow), and t4 ¼ 6.05τ (purple), as
indicated in (a). The arrows indicate the direction of the vector field at specific locations (arrow position) and times (arrow color).
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where the overdot denotes a time derivative. This simplifies
the data analysis since as a direct consequence the viscous
forces in Eqs. (2) and (3) also factorize into spatial and
temporal terms [20]

fαðr; tÞ ¼ CαðtÞfr;αðrÞ; α ¼ b; s: ð5Þ

Bulk flow.—Here, by construction ∇ × v ¼ 0 and
∇ × a ¼ 0 but ∇ · v ≠ 0 and ∇ · a ≠ 0. Hence, only bulk
effects contribute to the viscous force, i.e., fvis ¼ fb. We
take the one-body density to be inhomogeneous, but only
along the x direction. The one-body current has only an x
component which is taken to be constant in space:

ρðr; tÞ ¼ ρðxÞ ¼ ρ0 − ρ1 cos ð4πx=LxÞ; ð6Þ

Jðr; tÞ ¼ JðtÞ ¼ J0JtðtÞêx; ð7Þ

with average density ρ0σ3¼0.15625, amplitude ρ1σ3¼0.1,
side length of the simulation box Lx=σ ¼ 4, and maximum
value of the current J0τσ2 ¼ 0.01. Both the velocity
v ¼ J=ρ and the acceleration a ¼ _v ¼ _J=ρ (where the
second equality holds here since _ρ ¼ 0) are inhomo-
geneous in space even though the current is homogeneous.
The external force that produces this bulk flow together

with density, velocity, and acceleration profiles sampled in
MD are shown in Fig. 1(b) for four selected times. The
viscous force fvis [also shown in Fig. 1(b)] is the part of the
internal force that changes sign under flow reversal [20,22].
The four times selected in Fig. 1 represent the different
regimes of the time evolution imposed by Jt; see Fig. 1(a).
At t1 ¼ 0.5τ, i.e., t1 < t↑, the current increases, and both v
and a point in the same direction. At t2 ¼ 4τ, i.e.,
t↑ < t2 < tc, the system is in a quasisteady state with
negligible memory effects (we know this by monitoring the
viscous force which does not change with time). The
acceleration vanishes everywhere, and the velocity profile
remains unchanged in this time interval. At t3 ¼ 5.5τ,
i.e., tc < t3 < t↓ the current decreases. The velocity and the
acceleration profiles have opposite sign everywhere.
Finally, at t4 ¼ 6.05τ, i.e., t4 > t↓, both v and a vanish
everywhere. However, due to memory effects the system
has not reached equilibrium yet; there is, for example, a
viscous force generated by the history of v and a.
A visual inspection of the viscous force fvis, in Fig. 1(b),

reveals two strong indications that the acceleration profile
contributes to the viscosity. First, at t4 the viscous force
points in the opposite direction than at the previous times.
Hence, the history of the acceleration profile must be
dominating the viscosity since the velocity profile does not
change its sign during the whole time evolution. Only a
changes sign during the decrease of the current [compare
the acceleration profiles at times t1 and t3 in Fig. 1(b)].
Second, the profiles fvis at times t1 and t3 are similar.
At these two times the velocity profiles are identical by

construction; see Figs. 1(a) and 1(b). However, a and the
history of both v and a are different. Since the viscosity at a
given time depends on the history of the system, the
contribution to the viscosity due to the acceleration must
be canceling the contribution due to the history of the
velocity profile. Otherwise, the viscous force at these times
would differ.
The temporal part CbðtÞ for the bulk flow [see Eq. (5)]

can be understood as the variation of the strength of the
viscous force over time. Results are shown in Fig. 2(a).
Clearly, Cb achieves larger values than at the quasisteady
state for times around t↑, and smaller (negative) values than
in equilibrium (Cb ¼ 0) for times around t↓. The accel-
eration is responsible for the overshoot and the undershoot
around the times t↑ and t↓ because a is the only field that
flips its sign during the increase and during the decrease of
the current. Note that if a does not contribute to the bulk
viscous force, then the negative values ofCb would indicate
an unphysical negative viscosity.
We next compare the MD data to our expression for

the viscous force fb, Eq. (2), to obtain the kernel param-
eters; see the Supplemental Material [20] for details.

FIG. 2. (a) Temporal dependency of the bulk viscous force Cb
as a function of time t in molecular dynamics simulations (thick
black line) and theoretically (violet) for the bulk flow. The
vertical dotted lines indicate the times t↑; tc, and t↓. The time
t3 ¼ 5.5τ is highlighted with a yellow circle. The light gray line
fluctuating around the horizontal line is the difference between
simulation (thick black) and theory (violet). (b) Bulk viscous
force fvis as a function of x at time t3 ¼ 5.5τ according to MD
(yellow) and theory (violet). The force points along the x axis.
The colored arrows indicate the direction of the corresponding
force at selected positions. The contributions of the velocity
(green) and of the acceleration (blue) to the total signal (violet)
are also shown in (a) and (b). The bottom panels (c) and (d) show
the same data as the top panels, but using overdamped Brownian
dynamics instead of MD. In BD only the velocity field contrib-
utes to the viscosity.
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The amplitudes are cvb=ðϵσ3τÞ¼0.63, cab=ðϵσ3τ2Þ ¼ 0.044,
and the memory times are τvb=τ ¼ 0.043, τab=τ ¼ 0.56. The
partial contributions of the velocity and the acceleration
fields to Cb and fvis are shown in Figs. 2(a) and 2(b),
respectively. The sum of both contributions agrees quanti-
tatively with the MD data.
To assure that the overshoot and the undershoot in Cb are

indeed due to the acceleration field, we performed over-
damped Brownian dynamics (BD) simulations for exactly
the same flow (using BD custom flow [15,20] and the usual
assumption that the random force does not depend on the
external force [23]). Since the system is overdamped, the
acceleration does not play any role, and indeed, there is no
overshoot or undershoot in Cb [Fig. 2(c)]. Both Cb and
fvis are well reproduced theoretically using only the
velocity field, Figs. 2(c) and 2(d), with kernel parameters
cvb=ðϵσ3τÞ ¼ 0.117 and τvb=τ ¼ 0.041.
Shear flow.—We next consider a flow in which∇ · v ¼ 0

and ∇ · a ¼ 0 but ∇ × v ≠ 0 and ∇ × a ≠ 0. Hence, only
shear effects contribute to the viscous force, i.e., fvis ¼ fs.
Using custom flow we set the density profile to be
homogeneous and the current to be a shear wave pointing
in the y direction with modulation along the x direction,

ρðr; tÞ ¼ ρ0; ð8Þ

Jðr; tÞ ¼ Jðx; tÞ ¼ J0 sin ð2πx=LxÞJtðtÞêy; ð9Þ

with ρ0σ
3 ¼ 0.15625, Lx=σ ¼ 4, and J0τσ2 ¼ 0.01.

Figure 1(c) shows the external force required to produce
the flow along with results for ρ, v, a, and fvis at the same
four different times as in the previous flow. A visual
inspection of the data does not reveal the acceleration
contribution since (i) for times t1 ¼ 0.5τ and t3 ¼ 5.5τ
the curves are different (suggesting either a large memory
time of the velocity contribution or a strong effect of the
acceleration) and (ii) fvis does not flip the sign after the one-
body current vanishes. Also, in contrast to the bulk flow, no
apparent over- or undershoot is present in CsðtÞ, i.e., the
temporal part of fvis [see Fig. 3(a) and Eq. (5)]. For the
shear flow we find that the amplitudes cvs=ðϵσ3τÞ ¼ 0.56
and cas=ðϵσ3τ2Þ¼0.059, and the memory times τvs ¼ 0.24τ,
τas ¼ 0.23τ yield quantitative agreement between simula-
tion data and our theory for both the temporal, Fig. 3(a),
and the spatial dependence of fvis, Fig. 3(b). In contrast to
the bulk flow, the memory times of a and v are now
comparable, which partially hides the effect of the accel-
eration. To demonstrate the importance of awe use only the
velocity contribution and obtain cvs=ðϵσ3τÞ ¼ 0.56 and
τvs=τ ¼ 0.13 as the optimal kernel parameters. The resulting
curve for Cs [see Fig. 3(a)] deviates from the MD data
around the times t↑ (curve above MD data) and t↓ (curve
below MD data). This indicates that a indeed contributes
since its sign change around these times can correct these
deviations.

To further ascertain the reality of the acceleration con-
tribution, we use the obtained parameters for the amplitudes
and the memory times to describe a variation of the flow.
Instead of decreasing the one-body current after tc, we keep
the amplitude of the current unchanged and let the shear
wave travel in the positive x direction. Specifically, after time
t ¼ 2τ > t↑ we replace the x coordinate in Eq. (9) by x − vst
with constant velocity vs ¼ 4τ=σ. Hence, the acceleration
field is shifted by π=2 with respect to the velocity field; see
Fig. 3(c). The phase difference between v and a has an effect
on the viscous force; see Fig. 3(d). Using the kernel
parameters for the previous flow and both the velocity
and the acceleration contributions we reproduce the simu-
lation data. In contrast, using the parameters obtained only
with the velocity contribution results in a clear phase
shift compared with the MD data. See the Supplemental
Material [20] for more details.

FIG. 3. (a) Temporal dependency of the shear viscous force Cs
as a function of time t in MD simulations (thick black line) and
theoretically (violet) for the shear flow. The light gray line
fluctuating around the horizontal line is the difference between
simulation (thick black) and theory (violet). (b) Shear viscous
force fvis as a function of x at time t3 ¼ 5.5τ according to MD
(yellow) and theory (violet). The force points along the y axis.
(c) Illustrative velocity (green) and acceleration (blue) profiles vs
x for the traveling shear wave (t ¼ 2.7τ). Note that a and v are not
in phase. (d) Viscous force vs x for the traveling shear wave
according to MD (thick black) and theory (violet) (t ¼ 2.7τ). The
colored arrows indicate the direction of the corresponding field at
the selected positions. The theoretical contributions of v (green)
and a (blue) to the total signal (violet) are also shown in panels
(a), (b), and (d) together with the theoretical predictions using
only the velocity field (dashed green line). The colored circles
over the x axis in (d) indicate the position of the minimum of fvis
according to MD (gray), and theory using both contributions
(violet) or only the velocity contribution (green).
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Our results demonstrate the existence of shear and bulk
acceleration viscous forces generated by inhomogeneities
of the acceleration field. These forces act in addition to the
usual viscous response associated with the velocity field. In
our examples the contribution of the acceleration to the
viscous force is quantitatively significant. Acceleration
viscous forces might be also relevant in flows with rapid
temporal changes of the velocity field such as in shock
waves [24–28], turbulent flows [29–31] including atmos-
pheric and oceanic flows [32], inertial microfluidics
[33–35], the description of flows at the nanoscale [36–38],
mudflows [39], single-bubble sonoluminescence [40,41],
and viscous cosmological models [12,42].
We did not use a thermostat due to the low heat production

in both flows (the temperature increase was less than 2%
from the initial to the final state [20]). However, custom flow
can be used with thermostats [16], and it would be interest-
ing to compare the effect of the acceleration viscosities in
thermalized and nonthermalized flows.
We use here a rather simple kernel as compared with

other approaches [43–46]. The use of simple memory
kernels that decay exponentially in time is only possible
because we use all physically relevant variables, i.e., both v
and a. Since a and v are related to each other, it should be
possible to describe fvis using only v or a together with a
complicated kernel. Such a kernel would be tailored to the
specific flow instead of being general to every situation. For
example, it might be possible to describe the viscous force
of the bulk flow using only v and a complex memory kernel
with a negative tail.
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