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Paramagnetic colloidal spheres assemble to colloidal bipeds of various length in an external magnetic

field. When the bipeds reside above a magnetic pattern and we modulate the direction of the external

magnetic field, the rods perform topologically distinct classes of protected motion above the pattern.

The topological protection allows each class to be robust against small continuous deformations of the

driving loop of the external field. We observe motion of the rod from a passive central sliding and rolling

motion for short bipeds toward a walking motion with both ends of the rod alternately touching down

on the pattern for long bipeds. The change of character of the motion occurs in form of discrete

topological transitions. The topological protection makes walking a form of motion robust against the

breaking of the non symmorphic symmetry. In patterns with non symmorphic symmetry walking is

reversible. In symmorphic patterns lacking a glide plane the walking can be irreversible or reversible

involving or not involving ratchet jumps. Using different gauges allows us to unravel the active and

passive aspects of the topological walks.

1 Rolling, walking, and limping

Rolling is a process where a wheel winds around its axis and
thereby translates on a support. If the propulsion distance of
the wheel matches the wheel circumsphere the rolling is with a
non-slip condition. Otherwise the rolling is with slip. Walking
is generically a symmetric process differing from rolling. A
walker progresses in steps by moving his feet and depending on
the number of feet we call the walker a biped, triped, quadruped
etc. A human is an example of a biped, where both feet of a
walking person perform alternating steps. The spatial period of
the walk of a biped is two steps, – not one step –, since the
conformation of a person is restored after two steps and
the conformation after an odd number of steps is related to
the conformation after an even number of steps by a non-
symmorphic group operation (a half period translation followed
by a reflection known as a glide plane). The non-symmorphic
symmetry can be broken in a trivial manner for example by

breaking one of our legs in which case we start limping and the
broken leg functions differently than its non-broken mirror
image partner.

We may view symmetric walking as a symmetry reduced
form of rolling and limping as a symmetry reduced form of
walking. For a rolling wheel all orientations of the wheel are of
equivalent importance. A full rotation of the wheel passes
through all equivalent orientations of the wheel in a continuous
way. For a symmetric walker the symmetry of the motion is
reduced to a two fold discrete symmetry as compared to the
continuous symmetry of the wheel. The symmetry is further
reduced when the walker limps.

A subtle, albeit psychologically undesirable1 way of breaking
the non-symmorphic symmetry of a symmetric walker is by
letting him walk on a periodic structure with a period of the
pattern commensurable with his step width. If the pattern has
the period of one step but lacks the mirror symmetry of the
non-symmorphic group operation of our two-step-periodic
walker, we expect one foot to perform in a symmetry broken
way compared to the other foot. One example of such walking
is the motor protein Kinesin. It accomplishes transport by
walking with its two heads (not its two feet) along a micro-
tubule. The microtubule is a chiral periodic structure that lacks
mirror symmetries such that we expect differences between the
two heads even when the two heads walk in a ‘‘hand-over-
hand’’ mechanism, where the kinesin heads step past one
another, alternating the lead position.2,3
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A subtle way to allow for symmetric walking on a periodic
pattern is to use a pattern with primitive unit vectors of two
steps. If the space group of the pattern is non-symmorphic,
containing the non-symmorphic group operation of our walker,
the walker can still walk in a symmetric way.

If instead we use a symmorphic pattern containing only
symmorphic group elements the walker is expected to walk in a
symmetry-broken way. Its left foot has to step onto a position
that is not related by a symmetry operation to the position the
right foot steps upon.

A further way of breaking the symmetry of a walker exists for
driven systems, where the walker responds to external com-
mands. If those commands lack a non-symmorphic symmetry
in time our walker will perform a walk lacking the non-
symmorphic glide symmetry.

2 Robust walking

Rolling and walking are both usually generated by a cyclic
change of certain parameters that control and drive the motion.
These parameters can be as diverse as certain signals of
the spinal chord for walking humans4,5 or walking animals,6

the concentration of complementary DNA-strands as well as
temperature in DNA-bipeds,7 or the geometric shape for geo-
metric swimmers at low Reynolds numbers.8,9 We can thus define
a control space C that is the space of possible parameters that
might occur while we drive the motion. For robust walking the
result of a slightly perturbed loop in control space Cmust result in
a successful sequence of walking steps albeit the disturbance of
the loop. For robotic walkers mathematical algorithms such as
Lyapunov function based control algorithms or control barrier
functions are employed to guarantee safe walking.10 Another
powerful way of ensuring such robust behavior is the use of
topological invariants.11–23 If the control space C is a not simply
connected space the winding number w LCð Þ of a loop LC around
the holes in control space constitutes a topological invariant.
A walk on a pattern is a topological walk if the number of steps
nstep ¼ mw LCð Þ on the pattern is a non zero but low integer
multiple (m = �1, �2,. . .) of the winding number irrespective of
the details of how precisely and with which speed the loop in
control space winds around a hole.

This robustness includes perturbations that break the non-
symmorphic symmetry. When the walking is topologically
robust, then the stronger foot of the walker must consistently
make up for its weaker partner in order to secure the commen-
surability with the period of the pattern. The robustness,
however, also holds when we extend the two fold symmetry
of a walker to the continuous symmetry of a rolling wheel.
The space of orientations of a wheel is a not simply connected
space and thus topological invariants can be used to control
their motion on a pattern. In this work we morph the topolo-
gical sliding rolling of a colloidal wheel into the topological
equivalent motion of self assembled colloidal rods that either
slide and roll or walk on symmorphic and non-symmorphic
magnetic lattices. We show the topological robustness of the

transport by successively deforming the wheel into a biped and
by continuously changing the character of the motion from
rolling toward walking. Topological transitions toward larger
bipeds with discretely increasing step widths occur as the self
assembled biped grows longer.

3 Experimental setup

We illustrate the richness of biped motion using a square mag-
netic lattice (Fig. 1a)24,25 with a glide plane and a magnetic
hexagonal lattice (Fig. 1c) containing no glide plane. We study
experimentally and with computer simulations the character of
the biped motion. In the experiments, paramagnetic colloidal
particles (negatively charged COOH-functionalized paramagnetic
Dynabeads M-270 of radius R = 1.4 mm and effective magnetic
susceptibility weff = 0.6) assembled to a rod of n = 2–11 particles
move above a thin Co/Au layered system with perpendicular
magnetic anisotropy lithographically patterned via ion
bombardment.25–27 The pattern consists of a square (hexagonal)
lattice of magnetized domains with a mesoscopic pattern lattice
constant a E 7 mm, see a sketch in Fig. 1a and c. The whole
pattern is magnetized in the �z-direction normal to the film.
The magnetic pattern is spin coated with a 1.6 mm polymer film
that serves as a spacer. The paramagnetic colloidal particles are
immersed in water. A uniform time-dependent external magnetic
field Hext(t) of constant magnitude (Hext = 4 kA m�1) is super-
imposed to the non-uniform and time-independent magnetic field
generated by the pattern Hp. The external field Hext(t) is varied on
the surface of a sphere and hence the topology of our control space
C is that of a punctured sphere (certain bifurcation or fence points
are removed from the sphere which renders the sphere not simply
connected, see Fig. 1b and d). We perform periodic modulation
loopsLC of the external field in control space C to drive the system.
The external field is strong enough to cause the paramagnetic
particles to assemble into a rod because of induced dipolar
interactions between them. The two ends of the rod are the two
feet of our self assembled biped. The dipolar interactions are
stronger than the buoyancy of the biped causing the biped to align
with the external field, which generically lifts one foot of the biped
from the ground while the other foot remains on the ground.
Note that the locking of the orientation of the biped to the external
field with the continuous variation of the external field causes
each foot to always keep its magnetic character, i.e. the northern
foot located at rN being a magnetic north pole and the southern
foot at rS being a south pole. The vector b = rS � rN denotes the
northern foot to southern foot vector of the biped. The locking of
the biped orientation b to the external field Hext allows to inter-
changeably use the sphere of biped orientations or the sphere of
external field orientations as the control space. The southern foot
will be on the ground when the external field points into the south
of C. The northern foot will be on the ground when the external
field points into the north of C. The transfer of support between the
two feet occurs when the external field is within the tropics of C.

The external magnetic field has negligible lateral gradients
and the position of the biped is governed by the field gradients
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of the magnetic pattern. These gradients decay exponentially
with the distance from the pattern. Therefore, the location of
the walker is with the grounded foot sitting within a local
minimum of the colloidal potential (a foothold). The transfer of
support is accompanied by a release of the lifting foot from the
minimum of the colloidal potential and a sliding of the touch-
ing down foot into a new minimum (foothold). Generically, the
transfer of support will be associated with frustration as
the length b = 2(n � 1)R of the biped will not match with the
distance between consecutive minima.

4 Topological rolling transport of
single spheres

Let us refer to the two-dimensional space the walker steps upon
as action space A. Special closed modulation loops in control

space C induce open walks in action space A. In ref. 24, 25 and
28 we demonstrated how the bulk rolling of single colloidal
spheres (point particles) above magnetic lattices with different
symmetries is topologically protected. We summarize here the
main aspects of the sphere transport and refer the reader to
ref. 24, 25 and 28 for a complete description. For each lattice
symmetry there exist special fundamental modulation loops of
Hext in C that induce transport of colloids in A by a primitive
lattice vector ai. These fundamental loops share a common
feature, they wind around special objects that lie in C24,25,28

roughly in the direction of a primitive reciprocal unit vector
perpendicular to the primitive lattice vector ai of the transport.
A sphere does not walk because it is isotropic and has no foot. It
adiabatically slides or rolls29 on an externally controlled time
scale and for very particular non trivial loops on a square lattice
and in half of the non trivial loops on hexagonal lattice it
irreversibly slides on a faster intrinsic time scale. The character

Fig. 1 (a) Square ((c) hexagonal) magnetic pattern with up (white) and down (black) magnetized regions, characterized by the primitive unit vectors
ai (yellow) and primitive reciprocal unit vectors Qi (magenta). Colloids (magenta) assemble into a rod that functions as a biped with feet at both ends.
The biped walks across the pattern as we apply modulation loops of the external magnetic field. The external field and thus the orientation b varies on the
surface of a sphere (b and d). The walk depends on how the modulation loops in control space wind around the fence points (segments) in control space
(b and d) that in general vary with the length b of the biped. We show a typical fundamental loop LC (purple) that causes different topologically protected
transport for small and larger bipeds. Fence points for the square lattice in (b) are the points pierced by the cyan and blue arrows. For the hexagonal lattice
in (d) segments of fence lines are depicted in red and blue and they meet in bifurcation points where the curvature of the fence diverges.
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of the transport thus is that of a wheel rolling with slip between
the wheel and the ground.

In the simplest case, a square lattice, the control space is
characterized by just four zero order ‘‘fence’’ points on the
equator lying along the directions of the primitive reciprocal
lattice vectors,24 see Fig. 1b. For a hexagonal lattice the objects
are fence segments connecting bifurcation points in C, see
Fig. 1d. We call a modulation loop encircling one of these
objects a fundamental loop LQi . Each of these fundamental
loops induces adiabatic transport in the sense that a single
colloidal particle follows a minimum of the colloidal potential
at any time. Hence, the position of the particle in A parame-
trically depends on the position of the external magnetic field
in C. All modulation loops discussed in what follows can be
viewed as concatenations of fundamental loops. The motion of
a sphere is an adiabatic motion if the loop is encircling the
object without cutting through it.

5 Theory of adiabatic topological
walks

Because the transport of a colloidal sphere is topological it is
robust to perturbations. Mathematically the surface of a colloi-
dal sphere is a manifold of genus g = 0 and it is topologically
equivalent to a biped. In theory we may continuously distort the
shape of a sphere into that of a biped. In experiments this
distortion is achieved by an assembly of a discrete number of
spheres into a biped rod rather than by continuously distorting
a colloidal particle. If the perturbation introduced by this
change of shape is not too strong the result of a control loop
must be the same no matter whether the object is a sphere or a
biped. Longer bipeds fall into topological equivalence classes
that are different from that of a point particle.

We may write the pattern magnetic field as24

Hp = rc (1)

where

cðrÞ / e�Qz
XN
n¼1

exp irA � Rn
N �Q1

� �
(2)

is the magnetic potential and depends on the position r ¼
rA; zð Þ that we have split into a lateral vector rA in action space
A and the normal component z. Making use of the periodicity
of the pattern, topologically action space is equivalent to a
torus. A path leading from one unit cell to a neighboring unit
cell becomes a path that winds around the torus once. The
vector Q1 denotes one of the N lowest non vanishing reciprocal
lattice vectors of the 2D-lattice and Q = 2p/a its modulus. The
lattice is invariant under a 2D rotation RN by the angle 2p/N and
the other N � 1 equivalent reciprocal lattice vectors are
obtained by successive rotations Qn+1 = RN�Qn The projection
of the pattern magnetic field onto the external field and
averaged over the biped is the biped potential

Vbiped p c(rS) � c(rN) (3)

where rS and rN are the positions of the southern and the
northern foot of the biped. The vector b = rS � rN denotes
the northern foot to southern foot vector of the biped. When
the external magnetic field is strong compared to the pattern
field the orientation b is locked to the direction of the external
field b8Hext. We may thus choose the vector space of b as
control space. In the limit b { a the biped potential reduces to
a point particle potential

Vpoint p b�Hp p Hext�Hp (4)

5.1 Gauges

We have discussed the topological properties of Vpoint in ref. 24,
25 and 28.

We would like to write the position of both feet as a sum of
an absolute position and a conformational position

rS/N = rabs + rcon,S/N (5)

such that the conformation position after the period T of a
closed fundamental control loop LC is restored

rconf,S/N(T) = rcon,S/N(0) (6)

and the translation Drabs = ai by lattice vector over a period is
blamed onto the absolute position rabs. The decomposition
eqn (5) carries a gauge freedom. We will make use of two choices
of gauge. The center gauge simply choses the absolute position to
be the center of the biped r = rabs = (rS + rN)/2 and the conforma-
tional coordinates as rcon,S/N =�b/2. This choice of gauge is useful
since it splits the position into a vector r ¼ rA; zð Þ in action space
and a vector b in control space. An alternative choice of the
absolute position is the instantaneous center of rotation:

rAbs = rICR (7)

such that

drICR = db�rbrICR = 0 (8)

exactly if

db�rb|rICR � rS| = db�rb|rICR � rN| = 0 (9)

We call this gauge the walker gauge because eqn (9) will hold
whenever the biped foot remains within a non moving foothold
such that either rICR = rS or rICR = rN. Eqn (8) and (9) state that
the edge rICR of the triangle defined by rS, rN and rICR can only
translate if the triangle changes its shape. In particular, the
walker does not translate when one foot is grounded. The only
translational motion of an ideal walker drICR,ideal = btransferd(t �
ttransfer)dt occurs when the instantaneous center of rotation long-
itudinally moves from one foot to the other by the momentary
vector btransfer during the transfer of support. The walker gauge
shows how essential is the lift of one foot from the non moving
foothold and the grounding of the next foot for effective walking.
The center of an ideal walker in contrast moves on a circle around
the grounded foot while one of the feet is grounded. It does not
move when the grounding is transferred between the feet. The
motion of the biped center and the instantaneous center of

1666 | Soft Matter, 2021, 17, 1663�1674 This journal is The Royal Society of Chemistry 2021

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
1 

D
ec

em
be

r 
20

20
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

id
ad

e 
N

ov
a 

de
 L

is
bo

a 
on

 9
/7

/2
02

2 
12

:0
9:

38
 P

M
. 

View Article Online

https://doi.org/10.1039/d0sm01670e


rotation for a general ideal or non ideal walker are quite different.
Nevertheless, the motion of both points over a period is the same
and thus gauge independent because of eqn (6). We decompose
the motion of the instantaneous center of rotation into a long-
itudinal and transversal component.

We anticipate the longitudinal component of the motion as
the autonomous walking component of the motion. The trans-
versal component arises if a foothold is moving. This motion is a
passive transport of the walker with the foothold. The walker
gauge is useful to decompose the motion into walking and passive
advection. Note, however, that the decomposition into walking
and advection in contrast to the full motion is gauge dependent.

6 Adiabatic walks on square patterns
6.1 Walkers gauge

In Fig. 2a we show the driving loop L�Q2
�1ðDfÞ in the control

space C of a square pattern. The loop clockwise circulates the

fence point of �Q2 direction with an azimuthal width of Df. In
Fig. 2b we plot simulated trajectories on square patterns of the
southern (blue) and northern (red) foot together with the
instantaneous center of rotation rICR that we color in green
when the motion is longitudinal (along b), orange when it is
transversal, and white when it is a mixture of longitudinal and
transversal motion. Two trajectories are shown. One for a small
biped of length b = 0.6a and one of a large biped of length b =
2.8a. The long biped longitudinally autonomously walks, while
the smaller biped also shows some passive mixed sliding of the
foothold (white part of the instantaneous center of rotation
trajectory).

In Fig. 2c we plot experimental trajectories of the southern
(blue) and the northern (red) foot of various bipeds assembled
from colloidal spheres of radius R = 2.8 mm on a square pattern
of lattice constant a = 7 mm. We also plot the trajectory
instantaneous center of rotation (green). All bipeds are subject
to the loop L�Q2

�1ðDfÞ of width Df = 651. A video clip of bipeds

Fig. 2 (a) Control spaces of bipeds of lengths b = 0.5a, 1.05a, 2.1a with a fundamental loop L�Q2
�1ðDfÞ of width Df = 701. Fence lines are drawn in gray

and black. (b) Simulated trajectories of both feet (blue and red) and the instantaneous center of rotation rICR for a biped of length b = 0.6a and b = 2.8a.
Longitudinal moves of the instantaneous center of rotation are shown in green, transversal moves in orange and mixed moves in white. (c) Experimental
trajectories of the feet (blue and red) of bipeds assembled from 3–11 colloidal spheres of radius R = 2.8 mm on a square pattern of lattice constant a = 7 mm
are shown together with the path of the instantaneous center of rotation (green). We also overlay a microscope images of the final biped position of the
11-particle biped. Two consecutive footholds of the southern foot for each walker are marked in orange. (d) Plot of the simulated and experimentally
determined total, longitudinal and transversal displacement of the instantaneous center of rotation subject to the loop of width Df = 701 for the simulations
and Df = 651 and Df = 2001 for the experiments. Videoclips of bipeds subject to the same loop are shown in the Supplementary movie adfigure2.mp4.
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of different lengths subject to this loop are shown in the video
clip adfigure2.mp4. In Fig. 2c bipeds consisting of 3–11 colloidal
particles are shown. Two consecutive footholds the southern foot
steps upon are marked in orange to emphasize the step width of
our walkers. We also overlay a microscope image of the final
biped position for the 11-particle biped. The instantaneous
center of rotation alternates between the southern and the
northern foot. In Fig. 2d we plot the simulated and experimen-
tally determined total, longitudinal and transversal displace-
ment of the instantaneous center of rotation as a function of
the length b of the biped. The displacement is shown for a loop
of width Df = 701 for the simulations and Df = 651 and Df =
2001 for the experiments. The total simulated displacement
induced by the control loop is a primitive unit vector for small
bipeds and increases by two lattice constants when the biped
length times the sine of half the azimuthal loop width bt sin(Df/
2) = na is an integer multiple of the length of the unit vector. The
experimental displacement shows similar behavior, however also
even displacements are observed when bt sin(Df/2)/a is close to
an integer. Presumably this occurs because the control loop is
not entirely symmetric around Q2 such that the two higher order
fences pass through the loop at slightly different biped sizes.
Comparing the simulated and experimental total displacement
we find excellent agreement.

We also depict the longitudinal and transversal displace-
ment of the instantaneous center of rotation. The longitudinal
displacement Drl = a12b sin(Df/2)/a is proportional to the biped
length b and increases continuously with the length of the
biped. The transversal displacement does not exceed the length
of a primitive unit vector Drt = 2a1(b sin(Df/2)/a � round
[b sin(Df/2)/a]). If we decompose the experimental displace-
ment into longitudinal and transversal displacement we find
the experimental longitudinal component to be systematically
lower than the longitudinal component of the simulations.
The experimental transversal component shows some trend
to follow the discontinuous behavior of the transversal simulated
component. We believe this relatively poor agreement to arise
from the fact that in contrast to the total displacement the
individual displacements are not topologically protected, but are
susceptible to weak perturbations such as imperfections of the
lithographic pattern, misalignments between the control loop and
the pattern, and the deviation of the colloidal biped from an
idealized paramagnetic line.

6.2 Center gauge

For a better understanding of the topology of the motion the
center gauge is more useful and the potential in this gauge
reads (see eqn (3)):

Vbiped p (c(r + b/2)) � (c(r � b/2)) (10)

with the biped centered at the position r. The biped potential is
periodic and invariant under the simultaneous transformation
b - b + a and r - r + a/2 where a is a primitive lattice vector.
The biped potential reverses sign Vbiped - �Vbiped when one
reverses the biped vector b - �b. The fence is the set

F ¼ rA; bð ÞjrAVbiped ¼ 0 and det rArAVbiped ¼ 0
� �� �

. Its
projection into C is the set FC ¼ bj rA; bð Þ 2 F for some rAf g.

In Fig. 2a we construct the projection of the fence onto the
spherical control space of a biped of finite length b on a square
pattern from that of a colloidal sphere (a point particle see
ref. 24). For convenience we show the control space of a biped
of length b as a sphere of radius b. Pieces of three such spheres
are shown in Fig. 2a. As for point particles zero order fences lie
along the b1 and b2 coordinates. Because the biped potential is
periodic in b with period a these zero order fences repeat as
higher order fences every lattice vector (gray and black lines in
Fig. 2a). The minima near the black fences are displaced from
the minima near the gray fences by half the lattice vector.
For small bipeds b o a the control space is topologically
equivalent to that of a point particle. Larger biped control
spaces are cut also by higher order fences displaced from the
origin and are therefore topologically different from small
biped control spaces with more fence points on the equator.
Each winding of a control loop around one of the fences
adiabatically propels the biped by a unit vector perpendicular
to the fence. The fundamental loop L�Q2

�1ðDfÞ in Fig. 2a
winds clockwise around the central fence along the �b2 axes
for all biped sizes but also around the black displaced fences
parallel to the b2-axes for the b = 2.1a bipeds. The b = 2.1a
bipeds therefore are propelled three times as fast as the small
bipeds. Much alike human beings bipeds with longer legs move
faster than smaller bipeds. The increase in speed however
happens in discrete steps as the speed is topologically enforced
to be a multiple of a lattice vector per cycle.

The walker gauge may shed some light on what part of the
motion is true walking and what part is sliding. In contrast to
the gauge independent description in terms of winding num-
bers the decomposition into active and passive motion relies on
a gauge and does not survive a gauge transformation.

7 Selective combinations of
fundamental loops

The control space of the square lattice in Fig. 2a contains fence
points at the positions

fF ;n;m ¼ arcsin
na

b
þm

p
2
: (11)

with m = 0, 1, 2, 3,. . . and n an integer. For bipeds larger than
the lattice constant (b 4 a) fundamental loops around these
new n a 0 fence points will not transport small bipeds, but only
bipeds of the proper length. Moreover, the azimuthal position
for the higher order fences depend on the biped length
dfF
db

a 0

� �
, allowing to adiabatically transport larger bipeds

that fall into the appropriate length range. In Fig. 3a, we show
the complex loops in control space that transport small bipeds
into the �x-direction and bipeds consisting of four colloids of
biped length b = (4 � 1)2R into the +x-direction. In Fig. 3b the
four colloids are transported in the +y-direction perpendicular
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to the single colloid transport direction. A video clip showing
the complementary motion of different bipeds subject to
these complex loops are shown in the Supplementary movie
adfigure3.mp4. The longer the biped the more fence points
exist in control space and the more directions of motion can
be invoked by the proper combination of fundamental loops. A
protocol how to exploit the fence pattern in a systematic way
can be found in ref. 30.

8 Topological effects of hydrodynamic
friction

The topological protection of the walker is based on the fact
that the grounded foot of the walker remains within its local
foothold as long as we do not approach the equator of control
space where the transition of the foothold of the left toward the
right foot occurs. For this the instantaneous center of rotation
must remain with the grounded foot.

In a low Reynolds number fluid hydrodynamic friction
opposes the rotation of a biped with the external field. The
hydrodynamic friction of a rotating stick is minimal when the
instantaneous center of rotation is centered in the biped rather
than in one of its feet. Increasing the speed of the control loop

therefore causes competition for the instantaneous center of
rotation between the biped center and the biped feet.

When the hydrodynamic forces exceed the pattern forces,
which happens especially when the biped foot to foot vector
endpoint is close to one of the fences, one may lose an integer
number of steps per loop. The Mason number M¼
Z2pf =m0weffHextHp (with Z the shear viscosity of the fluid and
weff the effective magnetic susceptibility of a colloidal particle)
is a dimensionless measure of the driving frequency f = T�1 of a
loop. In Fig. 4a, we plot Brownian simulation data of the
number of steps of a biped versus its effective length b
sin(Df/2)/a and versus the dimensionless frequency

Mðb=aÞ3=2. The topological protection of an integer number
of steps of the biped also holds when the driving is not
adiabatic. However, the faster the driving the lower the number
of biped steps per loop.

The experimental data in Fig. 4b shows odd and even steps
and roughly follows the simulations. The lack of detailedFig. 3 (a) Control space for a biped consisting of four colloids (b = (4� 1)2R)

together with a loop encircling the zero order y-fence in the positive and
the 1st order x- and y-fences in the negative sense. Bipeds consisting of
four colloids are transported in the +x-direction while single colloidal
particles are transported in the �x-direction. We show an overlay of
microscope images of the same bipeds at different times with the different
times color coded from yellow toward red. (b) The same control space as
in (A) subject to a loop encircling the zero order y-fence in the positive and
the 1st order x- and y-fence in the negative sense. Bipeds consisting of
four colloids are transported in the +y-direction while single colloidal
particles and doublets are transported in the �x-direction. An overlay of
microscope images of various bipeds is provided using the same color
coding as in (A). Videoclips showing the complementary motion of
different bipeds subject to the complex loops in this figure are shown in
the Supplementary movie adfigure3.mp4.

Fig. 4 (a) Brownian dynamics simulations of the displacement of the
biped as a function of the Mason number and the effective length of the
biped. (b) The experimental data of a biped of length b/a sinDf/2 E 2.1
versus the frequency of the driving (red circles) and the simulated data for
the same effective length versus Mason number.
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agreement may be easily understood as we have neglected the
presence of the solid support as well as hydrodynamic interactions
between the colloidal beads in the simulations. However, the
topological locking to integer steps seems to be a robust feature
of the dynamics also at higher frequencies.

9 Symmorphic hexagonal pattern
9.1 Control space

In Fig. 5a we plot the fence (red and blue) in the Wigner Seitz
cell (cyan) of a hexagonal lattice as a function of b. In theory we
could in principle also change the length of the biped such that
our control space is augmented by one dimension. In the
experiments the biped length will be fixed and the control
space is the cut of a sphere of radius b with this augmented
control space. In Fig. 5a fence areas are bordered by bifurcation
lines (yellow, magenta, and cyan) with the bifurcation lines
meeting in topological transition points that are located in the
center and at the corners of the Wigner Seitz cell. A cut of
the periodically continued fence with a sphere of radius b
constitutes the control space C of a biped of fixed length b.
In Fig. 5b we show the normalized spherical control spaces for

b ¼ 0:33a; bt ¼ a=
ffiffiffi
3
p

; 0:7a
� �

and bt = a. If the fence segments of
two bipeds can be continuously deformed into each other
without changing the number of bifurcation points the bipeds
exhibit equivalent transport behavior. The behavior of the
bipeds changes at the topological transition lengths

bt ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþm2ð Þ=3

p
, where n and m are integers.

If we project the bifurcation lines of Fig. 5a to the plane bz = 0 we
obtain the projected fence lines in Fig. 5c. The yellow line segments
between the topological transition points are along the lattice
vectors and the magenta (cyan) segments are parallel to the positive
(negative) reciprocal lattice vectors when folded into the Wigner
Seitz cell. The cyan segments are anti parallel to the positive
reciprocal lattice vectors. The circle of biped length b cuts through

theses segments and the number Na (NQ) of yellow (magenta or
cyan) segments cut exactly once are the number of bifurcation
points of type Ba and BQ in the northern fence in Fig. 5b.

9.2 Stationary manifold

For a fixed length of the biped the stationary manifold M¼
rA; bð ÞjrAVbiped ¼ 0

� �
� C �A can be shown to be a manifold

of genus g = Na + NQ � 5 that is cut into three pieces Mþ and
M� of genus g+ = g� = (Na � 2)/2 and,M0 of genus g0 = NQ � 3,
where the stationary points are maxima, minima, respectively
saddle points of the biped potential. The holes in C � A and in
M are inherited from the holes of A (a torus). A loop LC � C in
control space has several preimage loops LMi �M, (i = 1,
2,. . .,m), (m = 4, 5, or 6) onM. If one of these loops entirely lies
in M� and winds around holes in M� the loop will be
projected into action space as a minimum loop LA � A that
winds around the torus and therefore adiabatically transports
the biped. Fundamental loops in control space that enter and
exit the region north of the fence via fence segments of the
same color (red or blue) cause adiabatic transport. A preimage
loop that winds around holes of M� but crosses over to M0

also transports but in form of a ratchet. Fundamental loops in
control space that enter and exit the region north of the fence
via fence segments of different color cause ratchet transport.
At fixed biped length b one form of adiabatic transport changes
to another form of adiabatic transport only via an intervening
ratchet. The adiabatic speed of a longer biped can be higher
once we insert more bifurcation points of type Ba into a fence in
control space and this happens the first time for b 4 a beyond
the lowest fence in Fig. 5b and c.

9.3 Response to loops in action space

The hexagonal pattern lacks a glide plane and the fence is no
longer located at the equator but in the northern hemisphere,
and the number of minima of the potential per unit cell of the

Fig. 5 (a) Fences (red and blue) within the Wigner Seitz cell (cyan) of a hexagonal lattice with unit vectors a1 and a2. Bifurcation lines (yellow, cyan and
magenta) are lines where the curvature of the fences diverges. The bifurcation lines meet at topological transition points located in the center and at the
corners of the Wigner Seitz cell. (b) Fence segments and bifurcation points on the control space C of the external field obtained from figure (a) by cutting the

fence with a sphere of radius b = 0.33a (upper fence), bt ¼ a=
ffiffiffi
3
p

, b = 0.7a, and bt = a (thinnest fence) and projecting it to a unit sphere. Topologically nontrivial
loops must wind around one of the bifurcation points of the biped. There are modulation loops that circle around a bifurcation point of a biped of one but not
the other length. (c) Projection of the bifurcation lines of figure (a) in an extended zone scheme onto the plane bz = 0 together with cuts (black) of the spheres
from (b) with this plane. Topological transitions in the biped behavior occur when ever the radius moves across one of the topological transition points.
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lattice differs depending on whether the external field is north
or south of the fence. For this reason, even if we apply a loop
that extends as much to the north as to the south of control
space, the motion of the biped is a limping motion. We see this
in Fig. 6 by the instantaneous center of rotation (green) meeting
the southern (blue) foot within a southern foothold (bubble)
and the northern (red) foot within one of the two (white)
interstitials between three bubbles. When the motion is adiabatic
the northern foothold can hold the northern foot at its location
while we exit the region of control space north of the fence. In
contrast, for a ratchet the northern foot of the biped prior to
crossing the fence is in a vanishing foothold and therefore
irreversibly jumps to the remaining foothold in the other inter-
stitial when we exit the northern region. Simultaneously the
southern foot jumps above the southern foothold (bubble). During
the jump the orientation of the biped is fixed and therefore the
instantaneous center of rotation moves away from the northern
foothold far above the magnetic pattern before it returns to the
northern foot after the jump. The northern foot stays with the
remaining northern foothold only for the short period of the loop
from the fence to the equator. The southern foot touches down to
the southern foothold when we cross the equator, and the
adiabatic propulsion caused by the northern segment of the loop
in control space is booked in the walker gauge by a transfer of the
instantaneous center of rotation from the northern to the southern
foot. In Fig. 6a we show the control space of a biped of length
b = 1.4a with 36 red and blue fence segments north of the equator.
A symmetric loop around�Q3 enters and exits the north of control

space via a red fence segment and thus causes an adiabatic walk
simulated with Brownian dynamics to the right of Fig. 6b.
A different asymmetric loop in Fig. 6a enters the north of C via a
blue segment and exits via the same red fence segment as the
symmetric loop. Upon entry the northern foot resides in a foothold
that vanishes upon exit through the red fence and therefore jumps
to the remaining foothold, i.e. the remaining foothold in which the
southern foot of the adiabatic loop had stayed in through the
entire northern part of the adiabatic loop. The net motion is �2a3

for the symmetric loop and �a2 � a3 for the asymmetric loop.
In Fig. 6c we show the experimental trajectories of two

bipeds of length b = 1.2a subject to an asymmetric and a
symmetric loop, the first performing a ratchet motion, the
second an adiabatic motion. Ratchet jumps are visible as a
motion of higher speed, with both feet making parallel dis-
placements such that the relative orientation of the feet remain
the same. Note that the adiabatic trajectories are mirror sym-
metric such that it is not possible to tell the direction of the
motion from the trajectories. The ratchet trajectories in con-
trast are chiral and the direction of the motion can be told from
this chirality. The direction is with the southern foot jumping
into the bubble not out of the bubble. Similarly, the direction
can be inferred from the northern foot jumping from the
foothold that is the center of curvature of the arc segment of
the southern foot toward the foothold that is not a center of
curvature of an arc segment of the southern foot. In the video
clip adfigure6.mp4 the motion of the two experimental bipeds
can be followed in full detail. The computation of the

Fig. 6 (a) Control space and fence of a biped of length b = 1.4a with an asymmetric control loop causing a ratchet and a symmetric control loop causing
adiabatic transport. (b) Simulated trajectories of the northern and southern foot and the instantaneous center of rotation of the same biped for the
asymmetric and for the symmetric loop. In the ratchet trajectories brighter colors of the trajectories label the regions of higher speed when the ratchet
jumps occur. (c) Experimentally measured ratchet and adiabatic trajectories of the feet of the bipeds of lengths b = 1.2a and b = 1.2a respectively.
The trajectories are colored with brighter colors where the velocity is higher. Videoclips of the two experimental bipeds are shown in the Supplementary
movie adfigure6.mp4.
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instantaneous center of rotation from the motion of the two
feet is rather sensitive to noise in the measurements and led
to results dominated by the noise for these experiments. We do
not show the instantaneous centers of rotation of the two
experiments for this reason.

10 Discussion

The bipeds studied in this work are rigid bipeds having no
joints. For these bipeds it is straight forward to compute the
winding numbers of the driving loops in control space. Some of
the objects one winds around are fixed and do not move with
the size of the biped. Higher order objects arising from the
periodicity of the problem as a function of the biped vector b
move in control space as the length of the biped grows. Part of
the motion is therefore topologically protected independently
of the size, others only beyond a certain size and only if one
adapts the modulation loop to the increasing size.

Robotic bipeds have joints and other internal degrees of
freedom of the conformation of a biped. Which of our findings
of this work remain true when dealing with colloidal bipeds
that have joints? The answer of course is that everything
remains topologically protected if the conformation of a biped
with joints does not deviate too strong from that of a rigid rod.
In Fig. 7 and in the Supplementary movie adfigure7.mp4 we
show the motion of a colloidal biped on a square lattice that is
deformed by viscous and magnetic stress31 by a loop enclosing
the vicinity of the equator. The shape of the biped at large
Mason number alternates between an S-shaped conformation
(stage 6 in Fig. 7) and its chiral mirror image (stage 4 in Fig. 7).

The same biped returns to a straight rod shape as the external
field direction moves along the longitudinal sections of the
loop. The non-adiabatic walking motion of these bipeds
remains locked to a unit vector of the lattice, which proves
that also flexible bipeds are topologically protected.

Once the flexibility of a biped becomes substantial we expect
them to morph into magnetic filaments the propulsion of which
has been studied in great detail.32–38 The propulsion of magnetic
filaments and bipeds are similar as they both are examples of
geometric motion, i.e. a motion, where the global displacement
only depends on the conformational path of the filaments or
bipeds and not on the speed with which the conformational path
is taken. Apart from these similarities the process of motion of
filaments starkly differs from the motion of bipeds. For a filament
to swim one must attach it to a larger particle that breaks the
mirror symmetry between the two ends. A mirror symmetric
filament would not be able to swim in a bulk low-Reynolds
number liquid. Our bipeds are mirror symmetric and they can
only walk by interacting with the magnetic pattern to which they
intermittently bind but then detach. In the case of filaments the
propulsion is a geometric propulsion which is not topological. If
one perturbs the driving magnetic field the motion of the
filament deviates from the original path, while in our topological
system a small perturbation of the driving magnetic field perturbs
the path of the motion but not the total displacement after
completion of the closed but perturbed modulation loop.

It is not important whether the particles are paramagnetic or
ferromagnetic since only the direction of the external magnetic
field not its magnitude enters into the topology of the biped
potential. We have not tried ferromagnetic colloids, but we
anticipate them to behave in the same way, if we could keep
them in a biped-shape and prevent the formation of closed rings.

A decrease of the scale will render thermal fluctuations more
important and will broaden the bifurcation points into local
regions that must be avoided in control space for the transport
to remain robust. The robust biped motion control might be
relevant for lab-on-the-chip applications.

11 Conclusions

The adiabatic walking step width of self assembled paramag-
netic colloidal rods on a periodic magnetic lattice is topologi-
cally locked to be commensurate with the magnetic lattice.
For this reason driving loops can be classified by winding
numbers around fences (bifurcation points with fence seg-
ments) in control space. The walking is robust against a variety
of static, adiabatic, and dynamic perturbations of the system.
While the description of the absolute motion of the biped is
gauge invariant, the decomposition into an active and a passive
motion is gauge dependent.
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Fig. 7 Overlay of nine microscope images of a shape changing flexible
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videoclip of the biped is shown in the Supplementary movie adfigure7.mp4.
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Appendix

We use Brownian dynamics to simulate the motion of the
bipeds on top of the magnetic pattern. Each biped consists of
N particles where each particle sees the magnetic potential

V xA;HextðtÞ; zð Þ / �HextðtÞ �Hp xAð Þe� z�z0ð Þ2p
a ; (12)

where Hext(t) is the external field at time t, Hp xAð Þ is the
magnetic field created by the pattern at a fixed height z0 above
the pattern at the position of the particle position xA in action
space A and z is the distance of the particle from the pattern.
The equation of motion is then given by

x _xAðtÞ ¼ �rAV xA;HextðtÞ; zð Þ þ ZðtÞ; (13)

where x is the friction coefficient and Z is a Gaussian random
force with a variance given by the fluctuation–dissipation
theorem. We use a constant value of x which neglects all
hydrodynamic interactions between the particles. The equation
is then integrated in time t with a standard Euler algorithm. To
restore the rigid shape of the biped and the enslavement of the
orientation b to the external magnetic field Hext(t), after every
simulation step the center xc of the biped is determined by the
mean position of all particles

xcðtÞ ¼
1

N

XN
i¼1

xiðtÞ (14)

and its direction b by the direction of the external field Hext.
The new position for every particle is calculated as

xiðtÞ ¼ xcðtÞ þ ð2i � ðN þ 1ÞÞ R

Hext
�HextðtÞ;

i ¼ 1; . . . ;N:
(15)

The particles are then shifted the same amount along an axis
perpendicular to the pattern such that the lowest particle has
the distance z0 from the pattern. We use a time step dt in the

range from
T

dt
� 2� 104 to 2 � 105, where the period T is

proportional to the arc length S of the modulation loop in
control space C.
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36 A. Cēbers and K. Ērglis, Flexible Magnetic Filaments and
their Application, Adv. Funct. Mater., 2016, 26, 3783–3795.

37 J. Wei, F. Song and J. Dobnikar, Assembly of Superparamagnetic
Filaments in External Field, Langmuir, 2016, 32, 9321–9328.

38 A. Zaben, G. Kitenbergs and A. Cēbers, 3D motion of flexible
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