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We show here simulation results (Brownian dynam-
ics) and theoretical predictions (power functional theory)
of the superadiabatic forces that occur in eight differ-
ent steady states of a model microscopic fluid interacting
via a repulsive pair potential. For each steady state we
impose the specific spatial form of the velocity and the
density profiles using the custom flow method [1]. This
Supplemental Material is organized as follows. In Sec. I
we define the particle model, and give details about the
simulation. In Sec. II we present the power functional
theory that we use to describe the simulation data. In
Sec. III we show the results for different steady states
and include a comparison between results from simula-
tion and theory for all types of superadiabatic forces.
Finally, in Sec. IV we discuss possible finite size effects
and conclude.

I. SIMULATIONS

A. Particle model

We study a two-dimensional system of interacting par-
ticles in a square simulation box with periodic bound-
ary conditions. The particles interact via the Weeks-
Chandler-Anderson potential [2], i.e. a purely repulsive,
truncated-and-shifted Lennard-Jones (LJ) pair potential
given by

φ(r) =

{
4ε
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σ
r

)12 −
(
σ
r

)6
+ 1

4

]
if r < rc

0 otherwise,
(1)

where σ and ε are the length and energy scales, respec-
tively, and rc/σ = 21/6 is the cutoff distance which cor-
responds to the position of the minimum of the LJ po-
tential. Time is measured in units of τ = σ2γ/ε with γ
being the friction coefficient. In all cases considered be-
low we set the number of particles to N = 5, and we use
a square simulation box of side length H/σ = 5 (the av-
erage density is therefore ρ0σ

2 = 0.20). The temperature
is set to kBT/ε = 0.5.

We use a reduced number of particles to be able to
sample for very long times and obtain high quality force
profiles. We note however that our previous works [3]
show that even a system with only two particles is enough
to observe the physically correct behaviour of superadia-
batic forces.

B. Brownian Dynamics simulations

The equation of motion for the i−th particle is

γ
dri(t)

dt
= −∇iu(rN ) + fext(ri, t) + χi(t), (2)

where u =
∑
i

∑
i<j φ(rij) is the total potential energy of

microstate rN = [r1, ..., rN ] with rij being the distance
between particles i and j. The external force is fext and
χi is a Gaussian random force acting on particle i. Time
discretization of equation (2) using the standard Euler
algorithm results in

ri(t+ ∆t) = ri(t) +
∆t

γ

[
−∇iu(rN ) + fext(ri, t)

]
+ ηi(t),

(3)
with ηi a delta-correlated Gaussian random displacement

with standard deviation
√

2∆tkBT/γ. We integrate the
equations of motion (3) using a time step ∆t/τ = 10−4.

To find the external force fields that produce the for-
ward and the reverse steady states, as well as the external
force in the adiabatic (equilibrium) state we use the cus-
tom flow method [1]. This method finds iteratively the
external force field that is required to produce the pre-
scribed velocity and density profiles. We briefly repro-
duce here the main steps of the method for steady states
and refer the reader to Ref. [1] for a detailed description
of its implementation and also of several different meth-
ods that can be used to correctly sample the current and
the velocity profiles (see the Appendix of Ref. [1]). The
exact force balance equation in an overdamped Brownian
system is

γv = fid + fint + fext, (4)

where the ideal diffusion is known explicitly fid =
−kBT∇ ln ρ. To find the external force fext required to
produce target velocity (v) and density (ρ) profiles in
steady states, we first solve the above equation for fext,

fext = γv + kBT∇ ln ρ− fint. (5)

Both ρ and v are known for a given (target) steady state.
Hence, the internal force field fint is the only unknown
field in the right-hand side of Eq. (5). We find fext iter-
atively. In iteration k the external force is

f
(k)
ext = γv + kBT∇ ln ρ− f

(k−1)
int , (6)

with f
(k−1)
int = F

(k−1)
int /ρ and F

(k−1)
int the internal force

density sampled at the previous iteration (i.e. under the
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influence of the external force f
(k−1)
ext ). To initialize the

iterative scheme we set at k = 0 the external force in an
ideal gas, i.e.

f
(0)
ext = γv + kBT∇ ln ρ. (7)

We then run a simulation with f
(0)
ext and sample f

(0)
int which

goes then into Eq. (6) to find an expression for the exter-
nal force at the next iteration k = 1. The iterative pro-
cess terminates when the external force is close enough
to that required to impose the target fields, which can be
easily checked by sampling at each iteration the velocity
and the density profiles and comparing them with the
target ones.

For each type of flow and for each state (adiabatic, for-
ward, and reverse) about 50 iterations are enough to find
the external forces. The total sampling time in the first
iteration is set to 103 τ and it linearly increases in each
iteration until it reaches 5 ·106 τ in the last iteration. Fi-
nally, we average over at least 100 of such runs such that
the results shown here represent an average over at least
5 · 108 τ for each state (adiabatic, forward, and reverse).
Together with the reduced number of particles, these ul-
tralong simulation runs enable us to obtain quasi-exact
reference data with two-dimensional space resolution.

II. POWER FUNCTIONAL THEORY

Within the formalism of density functional theory [4],
the adiabatic force field (fad) is given exactly as

fad(r, t) = −∇δFexc[ρ]

δρ(r, t)
, (8)

where Fexc is the excess (over ideal gas) intrinsic free
energy functional. The adiabatic force field is an
equilibrium-like force, since it only depends on the den-
sity distribution for a given type of interparticle inter-
action potential. Within the formally exact power func-
tional theory (PFT) [5], the superadiabatic force field
(fsup) is generated as the functional derivative of the ex-
cess power functional P exc

t via

fsup(r, t) = − δP exc
t

δJ(r, t)
= −1

ρ

δP exc
t

δv(r, t)
, (9)

where P exc
t and consequently fsup are functionals of both

the density and the current profile. We express the excess
power functional as a series expansion in powers of the
velocity v and the density ρ. The terms that are even in
v generate superadiabatic flow forces, which are odd in
v, and hence reverse their direction under flow reversal.
Note that the functional derivative (9) reduces by one the
order in powers of v of the superadiabatic forces fsup as
compared to the order that appears in P exc

t . Terms of the
expansion of P exc

t that are odd in powers of v generate
via Eq. (9) superadiabatic structural forces that remain

unchanged under flow reversal, and are of even power in
v.

It is therefore natural to split the excess power func-
tional into flow (P flow

t ) and structural (P str
t ) contribu-

tions:

P exc
t = P flow

t + P str
t , (10)

where P flow
t contains even powers of v and P str

t contains
odd powers of v.
Flow superadiabatic contributions. We use the

following second and fourth order terms (in powers of v)
to describe the flow contributions of the superadiabatic
force field:

P flow
t =

f1

∫
drρ2(∇ · v)2+ (11)

f2

∫
drρ2(∇ivj)(∇ivj)+ (12)

f3

∫
drρ2(∇ivj)(∇jvi)+ (13)

f4

∫
dr

∫ t

0

dt′K(t− t′)ρ4(∇iv′k)(∇jv′k)vivj+ (14)

f5

∫
dr

∫ t′

0

dtK(t− t′)ρ4[∇×∇× v′]2v2. (15)

where we have omitted the spatio-temporal dependence
of ρ and v to simplify the notation and have used the
Einstein summation convention over repeated indices. ∇i
indicates the derivative with respect to the i-coordinate,
and vi is the i-component of the velocity. The coeffi-
cients fi with i = 1, ..., 5 are flow transport coefficients
that depends on e.g. the interparticle potentials. They
can be expressed as functional derivatives of the excess
power functional with respect to the velocity gradient.
Here we adjust the transport coefficients to reproduce
the magnitude of the superadiabatic response obtained
in the simulations (note that the theory reproduces the
complete shape of the superadiabatic response, only the
magnitude is unknown). Here, v′ = v(r, t′) and K(t− t′)
is a temporal kernel normalized such that

lim
t→∞

∫ t

0

dt′K(t− t′) = 1. (16)

The precise form of the temporal kernel (not studied
here) is relevant in full non-equilibrium, but not in
steady state. The only effect of the primed terms in
Eqs. (14) and (15) is that the functional derivative re-
quired to obtain the superadiabatic force, see Eq. (9),
does not act on them. The term (∇iv′k)(∇jv′k)vivj in
the integrand of Eqs. (14) results from the contraction
Nijklmn(∇iv′j)(∇kv′l)vmvn, with N being an isotropic ten-
sor of rank six. The superadiabatic flow forces fflow are
generated from P flow

t via functional differentiation, cf.
Eq. (9).
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FIG. 1. Scaled value of the flow coefficients fα
∗, α = 1, .., 4

for the different flows considered here. The values have been
obtained by adjusting the theoretical flow force to the flow
force in BD simulations. The scale factors are: fi

∗ = fi/εσ
2τ

for i = 1, 2, 3, , f4
∗ = f4/εσ

4τ3, and f5
∗ = f5εσ

6τ3. The blue
cells indicate the corresponding flow force vanishes due to the
characteristics of the flow (v and ρ). The green cells (high
order terms in v) indicate that even though the corresponding
flow force does not vanish, it is not necessary to include the
high order term in order to reach an excellent agreement with
BD simulations since the low order terms already reproduce
the data.

The terms that are of second order in velocity,
Eqs. (11), (12) and (13), are a simplification of the more
general second order excess power functional based on
the velocity-gradient form given by [6] as

P flow
t =

∫
dr

∫
dr′
∫ t

0

dt′ρ(r, t)∇v(r, t)

: M(r− r′, t− t′) : ∇v(r′, t′)ρ(r′, t′), (17)

where the kernel M(r, t) is a fourth-rank tensor that car-
ries physical units of energy, and in general depends func-
tionally on the density profile. Here, the state of the sys-
tem is assumed to be known at the initial time t = 0,
and the colon indicates a double tensor contraction.

As the excess power must be invariant under arbitrary
rotations, the tensor M needs to be isotropic and hence
its components are given by

Mijkl = m1δijδkl + m2δikδjl + m3δilδjk, (18)

where δij etc indicates the Kronecker delta, and mα =
mα(r− r′, t− t′) with α = 1, 2, 3 depend on the interpar-
ticle potential and may also depend functionally on the
density profile. Here, we limit ourselves to steady states,
and hence use a local approximation in space and in time
for the memory functions

mα(r− r′, t− t′) = fαδ(r− r′)δ(t− t′), (19)

where fα are constants, the values of which are adjusted
to match the simulation data. For full time-dependent
situations memory effects are in place and the time de-
pendence of mα might be relevant [3, 6]. Insertion of
Eq. (18) into Eq. (17) results in the first three contribu-
tions of P flow

t given in Eqs. (11), (12) and (13). The
superadiabatic forces generated by these second order

in v contributions, cf. Eqs. (11), (12) and (13), are
a very good approximation of the superadiabatic flow
forces in most cases considered here. However, fourth or-
der isotropic terms, cf. Eqs. (14) and (15), are required
to have a proper description of the flow forces in two of
the steady-states studied below (flows 1 and 3).

The flow transport coefficients, fα with α = 1, ..., 5, are
obtained by adjusting the predicted flow superadiabatic
force to the simulation data for each specific flow. The
results for the flow transport coefficients are presented in
Fig. 1. We find that the values of each transport coeffi-
cient are similar across the different flows. Moreover, the
data clearly suggests the equality f2 = f3 indicating that
Eqs. (12) and (13) can be combined using the square of
the curl of the velocity field [6].

Out of eight different steady states considered here,
only the flows number 1 and 3 (described below) require
the inclusion of the higher order terms in order to achieve
excellent agreement with simulation data. In flow 1 the
inclusion of (14) has a big effect on the superadiabatic

flow force parallel to the flow, f
||
flow, predicted by PFT,

see Fig. 11 panels (a3) and (a4). Without (14), the pre-

dicted f
||
flow is only a sine wave opposing the flow and does

not reproduce the complex secondary structure shown in
the data. Moreover, the perpendicular flow force f⊥flow
presented in Fig. 11 panels (b3) and (b4) is completely
generated by this higher other term and therefore cannot
be described within the conventional Navier-Stokes vis-
cosity form. The higher order terms are also required to
reproduce in theory the y-component of the superadia-
batic flow force fflow · ŷ of flow 3, which otherwise would
vanish due to an exact cancellation between the parallel
and the perpendicular components, see Fig. 5(e2).

Structural superadiabatic contributions. Struc-
tural superadiabatic forces are generated by terms of the
excess power that are odd in powers of the velocity. The
superadiabatic forces generated by such terms are even
in powers of the velocity and hence remain unchanged
upon flow reversal. Based on our simulation data and
using a spatially local approximation for the kernels, we
propose the following terms of the expansion of P exc

t to
generate the structural components of the superadiabatic
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FIG. 2. Scaled value of the structural coefficients for the different flows considered here. The values have been obtained by
adjusting the theoretical structural force to the structural force in BD simulations. The scale factors are: si

∗ = si/εσ
2τ2,

for i = 1, 2, 3, 4 and si
∗ = si/εσ

4τ2 for i = 5, 6, 7, 8, 9. The blue cells indicate that either the corresponding structural force
vanishes due to the characteristics of the flow or that the term was not included in order to compare with BD simulations.

force field:

P str
t =

s1

∫
dr

∫ t

0

dt′K(t− t′)ρ3(∇ · v′)v2+ (20)

s2

∫
dr

∫ t

0

dt′K(t− t′)ρ3(∇iv′j)vivj+ (21)

s3

∫
dr

∫ t

0

dt′K(t− t′)ρ3(∇ · v)v′2+ (22)

s4

∫
dr

∫ t

0

dt′K(t− t′)ρ3(∇ivj)v′iv′j+ (23)

s5

∫
drρ3(∇ · v)3+ (24)

s6

∫
drρ3(∇ivk)(∇jvk)(∇ivj)+ (25)

s7

∫
drρ3(∇ · v)(∇ivj)(∇ivj)+ (26)

s8

∫
drρ3(∇ · v)(∇ivj)(∇jvi)+ (27)

s9

∫
drρ3(∇ivj)(∇kvi)(∇jvk). (28)

All terms (20)–(28) are third order in the velocity field
and we assume the temporal kernel K to be the same
as in the above case of the flow forces since we are only
interested in steady states for which the functional form
of K does not play a relevant role. In full nonequilib-
rium situations each contribution to P exc

t might posses
different temporal kernels. Here, as before, v′ = v(r, t′).
The first four contributions to P str

t , Eqs. (20)–(23), re-
sult from the only two isotropic terms of the contrac-
tions ∇v′ : L : vv, and ∇v : P : v′v′ with L and
P isotropic tensors of rank four. The further terms,
Eqs. (24) to (28), are constructed with the isotropic
combinations of Qijkmnl(∇ivj)(∇kvm)(∇nvl), with Q an
isotropic tensor of rank six. There exist 15 isotropic ten-
sors of six rank that result in 5 five different contributions
to P 3s

exc, see Eqs. (24)–(28).

The parameters ssα with α = 1, ..., 9 that best repro-
duce the simulation data are shown in Fig. 2. As we
demonstrate below, the predicted structural forces are
in excellent agreement with those measured in computer
simulations. However, in contrast to the flow transport
coefficients, the structural transport coefficients (Fig. 2)
show a significant variation across different flows. The
reason is potentially the presence of further hidden sym-
metry properties of P exc

t that impose relations between
the structural transport coefficients. This constitutes the
subject of future work.

III. STEADY STATES

We consider eight different types of flow in steady
state. The results are shown in two sets of figures. The
first set, Figs. 3 to 10, displays for each flow the velocity
and density profiles, v(r) and ρ(r), the external force field
in the forward and reverse states, fext(r) and f ′ext, the dif-
fusive force field, fid(r), the adiabatic force field, fad(r),
the complete superadiabatic force field, fsup(r), and the
splitting into flow and structural components, fflow(r)
and fsup(r). The second set of figures, Figs. 11 to 18
shows the full splitting of the superadiabatic force field

into the four different contributions, f
||
flow(r), f⊥flow(r),

f
||
str(r) and f⊥str(r), along with plots of the divergence and

curl of the velocity field, ∇·v and ∇×v, and the current
profiles J(r).

Flow 1

This is the flow that is shown in the main text: a gener-
alization of Kolmogorov flow in which the velocity profile
is a pure sine wave for each Cartesian component and the
density is homogeneous:

vx(r) = v0 sin(2πy/H)

vy(r) = v0 sin(2πx/H)

ρ(r) = ρ0, (29)
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with v0τ/σ = 1.0. The velocity profile is divergence-free
and it has nonvanishing curl,

∇ · v = 0, ∇× v 6= 0. (30)

Flow and force profiles are shown in Fig. 3. A full split
of the superadiabatic forces is shown in Fig. 11 together
with the current profile, and the divergence and the curl
of the velocity field.

Due to the symmetry of the flow, the x- and y-
components of all forces are related via an anticlockwise
rotation by 90o followed by a reflection at the y-axis.
As the density is constant, the ideal diffusion and the
adiabatic force field vanish. The internal force field is
hence purely superadiabatic. The flow force perpendic-
ular to the velocity field, Fig. 11 panels (b1) and (b2),
is particularly complex and it requires high order terms
in the expansion of P flow

t in order to reproduce it. As
shown below, the imposition of a constant density profile
is the main reason behind the complexity of f⊥flow.

Flow 2

This steady state has the same velocity profile as flow 1
but it possesses an inhomogeneous density profile:

vx(r) = v0 sin(2πy/H)

vy(r) = v0 sin(2πx/H)

ρ(r) = ρ0 {1 + ρ1 [cos(2πx/H)− cos(2πy/H)]} ,(31)

with v0τ/σ = 1.0, and ρ1σ
2 = 0.45. Therefore, for this

velocity field

∇ · v = 0, ∇× v 6= 0. (32)

Flow and force profiles are shown in Fig. 4. A full split
of the superadiabatic forces is shown in Fig. 12 together
with the current profile, and the divergence and the curl
of the velocity field.

Due to the strong density modulation, see Fig. 4(a3),
the particles primarily wind around only two points of
the velocity field as compared to four such center points
in the previous flow 1, compare illustrative particle tra-
jectories in Figs. 3(a4) and 4(a4). For visualization pur-
poses the diffusive term (Brownian motion) has not been
included in the equation of motion when calculating the
illustrative trajectories shown in panels (a4) of Figs. 3
to 10.

The ideal diffusion and the adiabatic force field are
strongly inhomogeneous as a consequence of the den-
sity modulation. The superadiabatic force field resembles
that of flow 1 but it is strongly influenced by the density
modulation. It is particularly interesting to compare the
perpendicular flow component f⊥flow in both flows 1 and
2, since they are completely different, see Figs. 11(b1-b2)
and 12(b1-b2). In flow 2, the compressible form of the
Navier-Stokes equations gives a good description of f⊥flow.

However, in flow 1 the density is constant and the Navier-
Stokes equations predict a vanishing flow force perpen-
dicular to the velocity field. The observed force fields
f⊥flow in flows 1 and 2 are therefore generated by differ-
ent mechanisms. In flow 2 the second order terms of the
expansion of P exc

t generate f⊥flow, see Eqs. (12) and (13).
In contrast, in flow 1 the superadiabatic forces f⊥flow gen-
erated by Eqs. (12) and (13) vanish due to the constant
density profile. Instead, f⊥flow is generated by the higher
order term given in Eq. (14).

Flow 3

Next we consider a steady state with constant density
profile, a pure sine wave for one component of the velocity
and a constant value for the other component:

vx(r) = v0 sin(2πy/H)

vy(r) = v0

ρ(r) = ρ0, (33)

with v0τ/σ = 1.0. Therefore, for this flow again

∇ · v = 0, ∇× v 6= 0. (34)

Flow and force profiles are shown in Fig. 5. A full split
of the superadiabatic forces is shown in Fig. 13 together
with the current profile, and the divergence and the curl
of the velocity field.

The ideal diffusion and the adiabatic force field van-
ish and hence the internal force is of superadiabatic ori-
gin. All forces depend only on the x−coordinate due
to the characteristics of v and ρ. The velocity pro-
file is a Kolmogorov flow (inhomogeneous shear) for the
x−component of the velocity and a constant value for
the y−component. The steady state is related to the
first example discussed in the main text (figure 1), with
two important differences: (i) there is a constant veloc-
ity in the direction orthogonal to the shear flow, and (ii)
the density is homogeneous by construction. Structural
forces (migration forces) appear in the direction perpen-
dicular to the shear flow, Fig. 5(f2), and are precisely
balanced by the external force (the density is imposed
to be homogeneous). In the direction of the shear flow
the superadiabatic force is dominated by a flow compo-
nent of viscous type, Fig. 5(e1). Remarkably, there exist
flow superadiabatic forces in the direction perpendicular
to the shear flow, Fig. 5(e2), and structural forces in the
direction of the shear flow, Fig. 5(f1). These two contri-
butions to the superadiabatic force field are not present
if the constant velocity in the direction perpendicular to
the shear flow vanishes (figure 1 of the main text).

Flow 4

As in the case of flows 1 and 2, we consider again the
effect of the density profile on the superadiabatic forces
by studying a steady-state with the same velocity profile
as that in flow number 3 but with an inhomogeneous
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density profile. The flow is characterised by the following
velocity and density profiles

vx(r) = v0 sin(2πy/H)

vy(r) = v0

ρ(r) = ρ0 {1 + ρ1 cos [2πx/H − cos(2πy/H)]} , (35)

with v0τ/σ = 1.0, and ρ1σ
2 = 0.5. Hence, as in previous

cases we find for this flow

∇ · v = 0, ∇× v 6= 0. (36)

Flow and force profiles are shown in Fig. 6. A full split
of the superadiabatic forces is shown in Fig. 14 together
with the current profile, and the divergence and the curl
of the velocity field.

A comparison between the superadiabatic forces that
occur in flows 3 and 4 is particularly useful to under-
stand how the inhomogeneities in the density profile af-
fect the superadiabatic forces. Compare e.g. the striking
difference between the y-components of the superadia-
batic flow forces of flows 3 and 4, see Figs. 5 and 6 panels
(d2),(e2), and (f2).

Flow 5

We next focus on a potential (curl-free) flow. The flow is
characterised by the following velocity and density pro-
files:

vx(r) = v0 (1 + v1 sin(2πx/H))

vy(r) = v0 (1 + v1 sin(2πy/H))

ρ(r) = ρ∗/ (vx(r)vy(r)) , (37)

with v0τ/σ = 1.0, v1τ/σ = 0.3, and ρ∗ a constant such
that

∫
drρ(r) = N . Therefore, we obtain for this flow

∇ · v 6= 0, ∇× v = 0. (38)

This is the first example shown here of a potential flow,
that is, the divergence of the flow does not vanish and the
flow is curl-free. Flow and force profiles are shown in
Fig. 7. A full split of the superadiabatic forces is shown
in Fig. 15 together with the current profile, and the di-
vergence and the curl of the velocity field.

The superadiabatic forces are dominated by flow com-
ponents, Fig. 7(e1-e2). Interestingly, the structural com-
ponents, Fig. 7(f1-f2), are mostly aligned with the adia-
batic forces, Fig. 7(c3-c4), instead of opposing them as it
was the case in previous examples with inhomogeneous
density profiles (flows 2 and 4).

Flow 6

We continue to increase the complexity of the nonequi-
librium situation under consideration and consider a flow
that is characterised by the following velocity and density
profiles:

vx(r) = v0 sin(2πy/H)

vy(r) = v0 (1 + v1 cos(2πy/H))

ρ(r) = ρ∗/vy(r), (39)

with v0τ/σ = 1.0, v1τ/σ = 0.5, and ρ∗ a constant such
that

∫
drρ(r) = N . For this flow neither the divergence

nor the curl vanish

∇ · v 6= 0, ∇× v 6= 0. (40)

Flow and force profiles are shown in Fig. 8. A full split
of the superadiabatic forces is shown in Fig. 16 together
with the current profile, and the divergence and the curl
of the velocity field.

An interesting observation for this flow is the partial
cancellation that occurs between the parallel and perpen-
dicular x−components of the structural superadiabatic

force. Compare fstr · x̂ in Fig. 8(f1) with f
||
str · x̂ and f⊥str · x̂

in Figs. 16(c1-c2). This highlights the importance of the
splitting of the superadiabatic forces according to their
direction.

Flow 7

We next consider a velocity profile in which one Cartesian
component vanishes. The flow is characterised by the
following velocity and density profiles:

vx(r) = v0(1 + 0.5 sin(2πx/H))

vy(r) = 0

ρ(r) = ρ∗/vx(r), (41)

with v0τ/σ = 1.0, and ρ∗ a constant such that
∫
drρ(r) =

N . The steady state is effectively one-dimensional since
no dependence on the y−coordinate appears in either v
or ρ. The velocity profile satisfies

∇ · v 6= 0, ,∇× v = 0. (42)

Flow and force profiles are shown in Fig. 9. A full split
of the superadiabatic forces is shown in Fig. 17 together
with the current profile, and the divergence and the curl
of the velocity field.

The ŷ−components of all forces vanish, as do as the
complete superadiabatic forces perpendicular to the flow
f⊥flow and f⊥str. The flow component, Fig. 9(e1), domi-
nates the superadiabatic force, Fig. 9(d1). However, the
structural component, Fig. 9(f1), is far from being neg-
ligible and it plays a different role than the flow compo-
nent by aligning with the adiabatic and diffusive fields,
Figs. 9(c1,c3).

Flow 8

The last steady state shares the velocity profile with flow
7. The density profile is, however, different and it de-
pends on both spatial coordinates which, as we see be-
low, has a strong influence on the superadiabatic forces.
The flow is characterised by:

vx(r) = v0(1 + 0.5 sin(2πx/H))

vy(r) = 0

ρ(r) = ρ∗(1 + 0.5 sin(2πy/H)/vx(r), (43)
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with v0τ/σ = 1.0, and ρ∗ a constant such that
∫
drρ(r) =

N . Therefore, for this flow

∇ · v 6= 0, ∇× v = 0. (44)

Flow and force profiles are shown in Fig. 10. A full split
of the superadiabatic forces is shown in Fig. 18 together
with the current profile, and the divergence and the curl
of the velocity field.

The steady state shares the same velocity profile with
flow 7 but it possesses a different density profile. The
density profile depends on the y−coordinate and, via a
coupling with the x−component of the velocity profile,
it generates flow and structural forces along the ŷ-axis,
Figs. 10(e2,f2). Interestingly, the splitting into forces
parallel and perpendicular to the velocity reveals that

the forces f
||
flow · ŷ, f⊥flow · x̂, f

||
str · ŷ, and f⊥str · x̂ van-

ish due to the absence of flow along the ŷ−axis, see
Fig. 18(a2,b1,c2,d1).

IV. FINITE SIZE EFFECTS

So far we have discussed results for a square simula-
tion box of size H/σ = 5. Although a complete finite
size study is out of the scope of this paper, we have ruled
out the occurrence of strong finite size effects by study-
ing two systems (flows 9 and 10) with double the size of
the simulation box, i.e. H/σ = 10 and the same overall
density for which we multiply the number of particles by
a factor four. The results are shown in Figs. 19 to 22.

Both flows with H/σ = 10 are related to Flow 1. Flow
9 is the same as Flow 1 but with a different box size H,
c.f. Eq. (29). The shape of all superadiabatic forces is
the same in both flows, compare Fig. 3 with Fig. 19 and
Fig. 11 with Fig. 21. This is a further confirmation that
the superadiabatic forces depend only on the shape of the
density and the velocity profiles. The magnitude of the
superadiabatic forces is different in both flows, which is
also expected according to PFT. In the larger box (Flow
9 - H/σ = 10) the gradient of the velocity field is two
times smaller than in the smaller box (Flow 1 - H/σ = 5),
compare Figs. 11(e2) and 21(e2). The magnitude of the
total superadiabatic forces is approximately a factor four
smaller in the larger box, compare Figs. 3(d1-d2) and
19(d1-d2). The leading term in the expansion of P exc

t

for flow 1 is that in Eq. (12) that contains two gradient
operators. Therefore, as the velocity gradient field in flow
9 is a factor two smaller than in flow 1, our PFT predicts
a reduction of roughly a factor four, which is completely
consistent with the simulation data.

Finally, the theoretical predictions of the superadia-
batic forces presented in Figs. 19 and 21 for flow 9 have
been obtained using the same transport coefficients as
those for flow 1. Despite no new adjustment of the
transport coefficients has been performed, the agreement
between theory and simulation data is very good. The
theory slightly underestimates the superadiabatic forces
which might be partially due to finite size effects.

Results for flow 10 are presented in Figs. 20 and 22.
Flow 10 is similar to flow 1 but doubling the frequency of
the velocity field, compare Figs. 20(a1-a2) and 3(a1-a2).
The magnitude of the gradient of the velocity field re-
mains therefore the same in both flows, c.f. Figs. 11(e2)
and 22(e2). Only the shape changes in a controlled man-
ner, flow 10 is like four flows 1 replicated in a larger sim-
ulation box. Using the flow and structural transport co-
efficients obtained in flow 1 we are able to reproduce the
superadiabatic forces in excellent agreement with those
obtained in simulations, confirming again that strong fi-
nite size effects are not present.

In summary, we have shown that by custom designing
the steady state of a fluid via prescribing both the den-
sity profile and the velocity profile in specific ways, one
is able to specifically trigger the nonequilibrium response
of the fluid. Depending on the type of flow and on the
spatial inhomogeneous structure, both viscous and struc-
tural superadiabatic responses are generated. The corre-
sponding force fields can only be fully understood on the
basis of splitting into components that are parallel and
perpendicular to the local flow direction.

Although we have limited the study to purely repulsive
Lennard-Jones particles, superadiabatic effects are al-
ways present in nonequilibrium interacting systems. We
expect the theory proposed here to reproduce the cor-
rect shape of the superadiabatic forces in systems with
isotropic interactions. The flow and the structural trans-
port coefficients will however depend on the details of
the interparticle potential. Moreover, in systems with
anisotropic interactions (e.g. lyotropic liquid crystals and
patchy colloidal systems) both superadiabatic forces and
superadiabatic torques will appear in nonequilibrium sit-
uations.

The presented methodology is highly flexible, as it al-
lows to target specific types of nonequilibrium behaviour.
Recall that all internal force fields ultimately originate
from the interparticle interaction potential. Hence the
classification allows to systematically address the influ-
ence of the nature of the interparticle forces, whether
attractive, long-ranged etc. Furthermore, addressing the
three-dimensional case is conceptually straightforward,
and comes only at increased complexity of the required
data analysis.

Finally, each type of superadiabatic contribution can
be further split into conservative and nonconservative
forces using the Helmholtz-Hodge decomposition of a vec-
tor field. The analysis of this further splitting can shed
light on the intricate structure of the excess power func-
tional that acts as a generator of the nonequilibrium in-
ternal force field.
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FIG. 13. Flow 3. Complete split of the superadiabatic forces according to BD simulations (left panels) and theory (right
panels). (a1-a4) Flow force parallel to the flow, (b1-b4) flow force perpendicular to the flow, (c1-c4) structural force parallel to
the flow, (d1-d4) structural force perpendicular to the flow. Divergence (e1) and z-component of the curl (e2) of the velocity
field. Panels (e3) and (e4) display the x- and y-components of the current, respectively.
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panels). (a1-a4) Flow force parallel to the flow, (b1-b4) flow force perpendicular to the flow, (c1-c4) structural force parallel to
the flow, (d1-d4) structural force perpendicular to the flow. Divergence (e1) and z-component of the curl (e2) of the velocity
field. Panels (e3) and (e4) display the x- and y-components of the current, respectively.
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FIG. 15. Flow 5. Complete split of the superadiabatic forces according to BD simulations (left panels) and theory (right
panels). (a1-a4) Flow force parallel to the flow, (b1-b4) flow force perpendicular to the flow, (c1-c4) structural force parallel to
the flow, (d1-d4) structural force perpendicular to the flow. Divergence (e1) and z-component of the curl (e2) of the velocity
field. Panels (e3) and (e4) display the x- and y-components of the current, respectively.
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FIG. 16. Flow 6. Complete split of the superadiabatic forces according to BD simulations (left panels) and theory (right
panels). (a1-a4) Flow force parallel to the flow, (b1-b4) flow force perpendicular to the flow, (c1-c4) structural force parallel to
the flow, (d1-d4) structural force perpendicular to the flow. Divergence (e1) and z-component of the curl (e2) of the velocity
field. Panels (e3) and (e4) display the x- and y-components of the current, respectively.
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FIG. 17. Flow 7. Complete split of the superadiabatic forces according to BD simulations (left panels) and theory (right
panels). (a1-a4) Flow force parallel to the flow, (b1-b4) flow force perpendicular to the flow, (c1-c4) structural force parallel to
the flow, (d1-d4) structural force perpendicular to the flow. Divergence (e1) and z-component of the curl (e2) of the velocity
field. Panels (e3) and (e4) display the x- and y-components of the current, respectively.
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FIG. 18. Flow 8. Complete split of the superadiabatic forces according to BD simulations (left panels) and theory (right
panels). (a1-a4) Flow force parallel to the flow, (b1-b4) flow force perpendicular to the flow, (c1-c4) structural force parallel to
the flow, (d1-d4) structural force perpendicular to the flow. Divergence (e1) and z-component of the curl (e2) of the velocity
field. Panels (e3) and (e4) display the x- and y-components of the current, respectively.
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FIG. 19. Flow 9 (finite size effects). Velocity (a1,a2) and density (a3) profiles. Size of the simulation box (a4) compare to that
in Flows 1-8 (dashed line). External force in the forward system (b1,b2) and in the reverse system (b3,b4). Ideal diffusion
(c1,c2) and adiabatic force (c3,c4). Total superadiabatic force in simulation (d1,d2) and predicted by theory (d3,d4). Flow
superadiabatic force: simulation (e1,e2), and theory (e3,e4). Structural superadiabatic force: simulation (f1,f2), theory (f3,f4).
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FIG. 20. Flow 10 (finite size effects). Velocity (a1,a2) and density (a3) profiles. Size of the simulation box (a4) compare to
that in Flows 1-8 (dashed line). External force in the forward system (b1,b2) and in the reverse system (b3,b4). Ideal diffusion
(c1,c2) and adiabatic force (c3,c4). Total superadiabatic force in simulation (d1,d2) and predicted by theory (d3,d4). Flow
superadiabatic force: simulation (e1,e2), and theory (e3,e4). Structural superadiabatic force: simulation (f1,f2), theory (f3,f4).
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FIG. 21. Flow 9 (finite size effects). Complete split of the superadiabatic forces according to BD simulations (left panels) and
theory (right panels). (a1-a4) Flow force parallel to the flow, (b1-b4) flow force perpendicular to the flow, (c1-c4) structural
force parallel to the flow, (d1-d4) structural force perpendicular to the flow. Divergence (e1) and z-component of the curl (e2)
of the velocity field. Panels (e3) and (e4) display the x- and y-components of the current, respectively.
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FIG. 22. Flow 10 (finite size effects). Complete split of the superadiabatic forces according to BD simulations (left panels) and
theory (right panels). (a1-a4) Flow force parallel to the flow, (b1-b4) flow force perpendicular to the flow, (c1-c4) structural
force parallel to the flow, (d1-d4) structural force perpendicular to the flow. Divergence (e1) and z-component of the curl (e2)
of the velocity field. Panels (e3) and (e4) display the x- and y-components of the current, respectively.
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