
This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 8543--8551 | 8543

Cite this: SoftMatter, 2019,

15, 8543

Hard topological versus soft geometrical
magnetic particle transport†

Anna M. E. B. Rossi,a Jonas Bugase,ab Thomas Lachner, a Adrian Ernst,a

Daniel de las Heras c and Thomas M. Fischer *a

The question of how a dissipative geometrical transport system changes towards a topological transport

system is important to render a fragile transport into a robust transport. We show how a macroscopic

magnetic topological transport of solid state spheres changes to a geometrical transport of ferrofluid

droplets, when instead of a solid state object, soft matter is transported. The key difference when

comparing solid objects with fluid droplets is the possibility to split a ferrofluid droplet into two droplets.

It is shown how this fundamental difference also fundamentally changes the transport properties.

Hence, experimentally and theoretically the transport on top of a periodic two-dimensional hexagonal

magnetic pattern of (i) a single macroscopic steel sphere, (ii) a doublet of wax/magnetite com-

posite spheres, and (iii) an immiscible mixture of ferrofluid droplets with a perfluorinated liquid is

analyzed. The transport of all these magnetic objects is achieved by moving an external permanent

magnet on a closed modulation loop around the two-dimensional magnetic pattern. The transport

of one and also that of two objects per unit cell is topologically protected and characterized by

discrete displacements of the particles as we continuously scan through a family of modulation loops.

The direction and the type of transport are characterized by the winding numbers of the modulation

loops around special objects in control space, which is the space for the possible directions of the

external magnetic field. The winding numbers necessary for characterizing the topological transport

increase with the number of particles per unit cell. The topological character of the transport is

destroyed, when transporting a large collection of particles per unit cell, like it is in the case of a

macroscopic assembly of magnetic nanoparticles in a ferrofluid droplet for which the transport is

geometrical and no longer topological. To characterize the change in the transport from topological

to geometrical, we perform computer simulations of the transport of an increasing number of

particles per unit cell.

1 Introduction

When a system is driven adiabatically, its state changes slower
than any relaxation time. The state of a classical system then
follows the same path independently of the speed of driving.
If driven adiabatically at different speeds, the state of a quantum
system also follows the same path up to the global dynamic
phase1 of its wave function that cannot be measured. Measurable
quantities are geometrical in the adiabatic limit, since they can be
deduced from the path without the knowledge of a particular time
table with which one drives the system along this path. For a

periodically driven system, the transport of particles over a
period then is proportional to the geometric quantity of the
loop of the driving field.2–4 For example, autonomous low
Reynolds number swimmers propel by a distance proportional
to the area of the driving control loop in shape space.5,6

Adiabatic quantum two-band electrons propel by an amount
proportional to the area enclosed by the SU(2), respectively
SO(3) D SU(2)/Z2 matrices of the periodic control loop induced
by the external field.1,7

The area of a loop is a geometric quantity that continuously
changes when the driving control loop is altered. When sym-
metries or other conditions constraint the driving loop, the
geometrical properties might become discrete global properties,
called topological invariants. Then, the transport no longer
changes continuously with the loop since families of loops
share the same topological invariant. The transport changes
discretely between two families of loops with different values of
the topological invariant.7 The transport is robust because it is
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topologically protected. For example, in a nucleus one nucleon
must rotate by multiples of 2p when it propels by one lattice
constant above the lattice of the crystallized nucleons that form
the rest of the nucleus.8

Understanding how a system changes from geometrical
towards topological is important. With this knowledge we can
change a fragile, geometric transport into a robust topological
transport. For example, in the quantum Hall effect steps
between the plateaus in the conductivity can be created either
by lowering the temperature or by using clean systems with
fewer impurities.9 Both methods decrease the probability of
exciting unoccupied bulk Landau levels and thus make the
system topological. For many quantum and classical systems,10–15

the transition from geometric towards topological transport can
be understood via the amount of dissipation occurring due to the
scattering between states. It has, however, been shown that there
exist non-Hermitian quantum and dissipative classical topological
transport systems,16–20 where it is precisely the dissipation that
causes the topological character of the transport. For these
systems the transition from topological towards geometrical must
be different.

The purpose of this work is to show how topological transport
phenomena also play a role in soft matter systems. We show
experimentally and with computer simulations that a macro-
scopic topological magnetic particle pump,21 which transports
paramagnetic or soft magnetic particles across a magnetic lattice,
is topological when transporting a small number of particles per
unit cell. The transport is robust for the modulation loops of
a driving homogeneous external field that share the same
topological invariant. Subclasses of modulation loops appear
for a loading with two or more particles per unit cell, increasing

the number of discrete steps. However, for loadings with a
macroscopic ensemble of magnetic nanoparticles, such as a
ferrofluid droplet, the topological nature of the transport is
destroyed and becomes geometrical.

2 Topogeometrical pump

The system consists of a two-dimensional hexagonal magnetic
pattern made of up- and down-magnetized magnets, see
Fig. 1a. The pattern creates a two-dimensional magnetic
potential that acts on paramagnetic objects located above the
pattern at fixed elevation. The potential is a function of the
position xA 2 A of the paramagnetic object in action space A,
which is the plane parallel to the pattern in which the objects
are located. A uniform external magnetic field is also applied to
the system. Hence, the total potential depends parametrically
on the direction of the superimposed external magnetic field.
Paramagnetic objects, such as soft magnetic spheres and
ferrofluid droplets move in action space when we adiabatically
modulate the total potential by changing the direction of the
uniform external field.

Our two dimensional magnetic hexagonal lattice is built
from an arrangement of NbB-magnets21 (Fig. 1a). The arrange-
ment is such that the primitive unit cell of the lattice is a sixfold
symmetric C6 hexagon with corners centered within the smaller
magnets, see Fig. 1b. Each unit cell thus contains one large
magnet and two small magnets. The total magnetic field is the
sum of the pattern Hp and the external Hext contributions

H = Hp + Hext. (1)

Fig. 1 Experimental setup: (a) top view of the hexagonal magnetic pattern. The inset is a close view of the transported steel sphere. (b) Scheme of the
position and the orientation of the magnets. The silver areas in the sample (red areas in the scheme) are magnetized up. The black (green) areas are
magnetized down. One unit cell is emphasized in full colors. The vector Q1 is one of the primitive reciprocal lattice vectors. (c) Side view of the pattern
and the compartment holding either one steel sphere, two wax spheres, or Galden and a ferrofluid. (d) Schematic of the goniometer and the external
magnets surrounding the sample. (e) A photo of the setup.
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The potential energy of a paramagnetic object in the total magnetic
field H is proportional to the square of the magnetic field

U xAð Þ / �H2; (2)

and it can be decomposed into a discrete Fourier series of
contributions from reciprocal lattice vectors.17,23 The Fourier series
of the potential evaluated in a plane above the pattern and parallel
to it is the square of the Fourier series of the magnetization of the
pattern augmented by the external field. As a function of elevation,
the higher Fourier coefficients are attenuated more than those
with lower reciprocal vectors. At the experimental elevation (com-
parable to the length of the unit cell of the pattern), only the
‘‘universal’’ contributions to the potential from the lowest non-zero
reciprocal lattice vectors remain relevant.17,23 The purpose of the
spacer (Fig. 1c) is thus to render the potential universal such that
only the symmetry and not the fine details of the pattern are
important.

We either place one steel sphere or two spheres consisting of a
mixture of wax and magnetite on top of the spacer. Alternatively,
we fill a closed compartment with a mixture of a nonmagnetic
fluid (Galden) and an aqueous ferrofluid, immiscible with the
Galden. The choice of particles and ferrofluids to be transported
is made in a way as to suppress dipolar interactions and fingering
instabilities24,25 that are known to govern the behavior of ferro-
fluids at stronger magnetic fields. The magnetic pattern with the
transported paramagnetic object on top is then placed in the
center of a goniometer. Both, a sketch and an actual picture of
the setup are shown in Fig. 1d and e, respectively. The gonio-
meter holds two large NbB-magnets that generate the external
field. The magnets are aligned parallel to each other and create
an external magnetic field of magnitude m0Hext = 45 mT that
penetrates the two-dimensional pattern, the steel sphere, the
wax/magnetite spheres, and the ferrofluid droplets. The dipolar
interactions between two wax/magnetite spheres or between
ferrofluid nanoparticles are weak compared to the interaction
with the pattern and the external field.

The gradient of the magnitude of the external field at the
position of the transported objects rHext E Mexttextdext

2/R4 is at
least two orders of magnitude smaller than that of the magnetic
field of the pattern rHp E (Ml + Ms)/a. Hence, the field created
by the external magnets is effectively uniform. The two external
magnets can be oriented to produce an arbitrary direction of
the external magnetic field with respect to the pattern. A laser
pointing along Hext is mounted on the goniometer, see Fig. 1e,
to create a stereographic projection of the instantaneous external
magnetic field direction on the recording plane.

3 Topologically nontrivial transport
loops

The parametric dependence of the potential acting on a para-
magnetic object (eqn (2)) was studied in detail in ref. 17. The
potential has a hexagonal symmetry and the number of minima
per unit cell of the potential can be one or two, depending on
the orientation of the uniform external field. The set of possible

orientations of the external field forms a sphere that we call the
control space C (see Fig. 2b). Two minima exist in the excess
region of C (see Fig. 2b) in which the orientation of the external
field is roughly antiparallel to the magnetization Ml of the silver
magnets in Fig. 2a. Only one minimum of the potential exists
for the orientations of the external field roughly parallel to the
magnetization of silver magnets (see the green region of the
control space in Fig. 2b). The boundary in C between the excess
region and the region of one single minimum is a closed curve in
C that we call the fence F . The fence consists of twelve segments
(red and blue in Fig. 2b) meeting in twelve bifurcation points.
These bifurcation points (Bþai ; and BþQi ) are located in the
southern hemisphere of C on longitudes running through the
directions �ai and �Qi (i = 1, 2, 3) of the primitive unit vectors
of the direct and reciprocal lattice, respectively (see Fig. 2a
and b). The fence segments are of two types +Q-segments
(red segments in Fig. 2b) and �Q-segments (blue segments in
Fig. 2b).

We reorient the external magnets by moving along a closed
reorientation loop that starts and ends at the same orientation.
(See the black point in Fig. 2b marked as the starting point
between Q2 and the a3 longitude in the southern unique
minimum region.) As a result of the reorientation loop of the
external field, the steel sphere, the wax/magnetite spheres, and
the ferrofluid droplets move above the magnetic lattice. A motion
of the steel sphere is topologically trivial when the sphere
responds to a closed reorientation loop with a closed loop on
the lattice. Not every closed reorientation loop causes such a trivial
response of the steel sphere. There are topologically nontrivial
trajectories, where the steel sphere ends at a position differing
from the initial position by one unit vector of the magnetic lattice.
Nontrivial closed reorientation loops in control space are those
loops that have loop segments in both the excess region and the
region of the unique minimum.17,21 Here, the reorientation loop
enters the excess region with a longitude fentry between the Q2

and the �a2 directions and exits the excess region between the Q2

and the a3 longitudes at fexit = 4.4p/6. The schematic reorientation
loops in control space are depicted in Fig. 2b.

3.1 Single steel sphere transport

We have reported in ref. 17, 21 and 22 how the transport of a
single paramagnetic particle changes as we move the entry
longitude 4.4p/6 o fentry o 8.5p/6 of the reorientation closed
loop. Here we briefly repeat the findings which are important
for this work. The steel sphere adiabatically returns to its initial
position (performs a closed loop above the lattice) if the
reorientation loop enters and exits the excess region via the
same fence segment. As an example of such a loop we have
drawn the loop a in Fig. 2b for which fentry = fexit = 4.4p/6. The
sphere also returns to the same position when the reorientation
loop encloses only the bifurcation point Ba3 or the two bifurca-
tion points Ba3 and B�Q1

in C such as in the case of loops b–e
(5p/6 o fentry o 7p/6 and fexit = 4.4p/6) in Fig. 2b. However, as
the modulation loop encloses Ba3 the motion is no longer
adiabatic. Instead, an irreversible ratchet jump occurs as the
modulation loop exits the excess region through the fence.
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A ratchet occurs if the entry and the exit fence segments are of
different types. The motion is always adiabatic if the control
loop enters and exits the excess region via the same type of
fence segments, either +Q-segments or �Q-segments.17,21 Here,
the motion of the steel sphere returns to adiabatic when
enclosing the third bifurcation point B�a1 (loops f–i 7p/6 o
fentry o 9p/6 in Fig. 2b) with a total displacement of the sphere
by one unit vector �a2. Since this reorientation loop is adiabatic,
the time reversed loop (e.g. the inverse loop �h with
4p/6 o fentry o 5p/6 and 7p/6 o fexit o 8p/6) transports into
the opposite, i.e. the a2 direction compared to the direct loop. We
have measured the position of the fence in control space via the
ratchet jumps of the steel sphere. The blue and red spheres in
Fig. 2b are the experimental data of these measurements.

3.2 Ferrofluid droplet transport

In Section 3.1, we described the limiting case of one particle
being transported. Here, we describe the opposite limit, namely

the transport of a macroscopic ensemble of particles. The
particle numbers in between describe the transition from
topological towards geometrical and they are discussed in
Sections 3.3 and 3.4. To mimic the transport in a system with
hundreds of tiny particles per unit cell, we consider the motion
of ferrofluid droplets. Hence, the transported object can no
longer be considered a point particle. To understand the
motion, we need to consider the equipotential lines around
the minima of the total magnetic potential that drives the
motion. In Fig. 3 we collect images that show the motion of a
ferrofluid droplet along some of the control modulation loops
displayed in Fig. 2. The loops enclose from zero up to four
bifurcation points. At the starting point, the steel sphere and
the ferrofluid droplets reside above the central magnet of the
unit cell. The sphere/droplet moves away from this location as the
external magnetic field enters into the excess region of C.
Nothing special occurs when the external field crosses the fence,
and nothing particular happens to the single steel sphere as the

Fig. 2 Orientation of the pattern, the corresponding orientations of the external field in control space and the different events occurring for single steel
spheres, wax/magnetite-doublets, and ferrofluid droplets upon the family of modulation loops applied in the experiments. (a) Direction of the primitive
unit vectors a1, a2, and a3 of the direct lattice and direction of the primitive unit vectors Q1, Q2, and Q3 of the reciprocal lattice. (b) Control space of the
hexagonal lattice. Theoretical fences between the region of one unique minimum (green) and the excess region for paramagnetic objects are shown as
red (+Q segments) and blue (�Q segments) lines. The experimental fence data from the single steel spheres are shown as red and blue spheres. The
experiments are performed with modulation loops (a–i) that start at the big black circle (starting point) and enter the excess region in the south of C along
a longitude between the Q2 and the �a2 longitudes through either a red or blue fence segment. The loops exit this region and return to the starting point
through the red fence along a longitude between a3 and Q2. We also used the time reversed loop �i of the loop i. We measure the transport of
paramagnetic objects on the pattern as a function of the entry longitude that we continuously vary as a function of the azimuthal angle fentry. The
experimentally color coded spheres show the measured splitting location of the ferrofluid droplets and of wax/magnetite doublets, see the legend. The
color decodes the different sizes of the split objects according to eqn (3). The same color coding with the droplet areas replaced by the subareas of
the theoretical lemniscates is used for the background in the excess region. The unit vector n is normal to the pattern. (c) Two unit cells with experimental
ferrofluid droplets at a Q-splitting line for fentry E p (top). Two unit cells of the pattern with theoretical lemniscates (equipotential lines through saddle
points), computed from the magnetic potential for an external field in the excess region (middle). Two unit cells with experimental ferrofluid droplets at
an a-splitting line on the loop g for fentry E 7.5p/6 (bottom). The dashed arrows point at the corresponding orientations of the external field in C. A video
clip clarifying the details of this figure is provided in the ESI† (adfig2.mp4).
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field moves deeper into the excess region. The ferrofluid droplet,
however, deforms into a dogbone-like shape and eventually splits
into two smaller droplets when the modulation loop crosses a
droplet splitting line in C. Some of the shapes of such droplets are
shown in Fig. 2c. Their shape and size agree very well with the
shape and size of the lemniscates, which are simply the equipo-
tential lines of the colloidal potential passing through the saddle
point between both minima (see Fig. 2c). The two separated
ferrofluid droplets reside in a region above the two different
minima, where the potential is in the excess region of C. The
droplets are in general transported into different directions.
When the modulation loop is closed (returns to the starting
point), the two split ferrofluid droplets must return to either the
original position above the same central silver magnet or to an
equivalent position in a different unit cell. The transport over one
period is therefore the coexistence of two different types of
transport directions. The total transport is the sum of the two
coexisting displacements, weighted with the two areas of the
droplets when they split.

The splitting of a ferrofluid droplet occurs either in an
adiabatic way (a-splitting) or irreversibly (Q-splitting). Both
types of splitting are schematically represented in Fig. 4. The
ferrofluid droplet covers a certain area A of action space when the
external field enters the excess region of C. A ‘‘minor’’ excess
minimum and an excess saddle point are created in the magnetic
potential upon the entry of the external field into the excess region.17

The equi-potential line passing through the excess saddle point
is a lemniscate that first winds around the preexisting ‘‘major’’
minimum, then passes through the saddle point, and next winds
around the minor excess minimum. Hence, the lemniscate
defines a closed curve of area L = L+ + L� where each of the
two sub areas, L+ and L�, surrounds a minimum of the potential.
At the fence in C, the sub lemniscate area of the minor minimum,
L+ = 0 (L� = 0) for a �Q-fence segment (+Q-fence segment)
vanishes. At the fence L+ = 0 or L� = 0 and the area occupied by
the ferrofluid droplet can be either larger A 4 L+ + L� or smaller
A o L� (A o L+) than that of the preexisting major minimum.

In the case A 4 L+ + L� (a-splitting), which occurs if the loop
enters the excess region of C close to a Ba bifurcation point, the
ferrofluid droplet assumes the shape of an equipotential line
containing both minima (see Fig. 2c bottom and Fig. 4a). When
the loop enters deeper into the excess region of C, the area of
the lemniscate grows (Fig. 4(a1) and (a2)). At the point where
the area of the lemniscate is the same as the area of the droplet,
L = La = A, both lemniscate subareas La

+ and La
� are fully filled

with a ferrofluid (Fig. 4(a3)). When the area of the lemniscate
grows beyond that of the droplet, L 4 A, then the droplet splits
into two droplets of areas A+ = La

+ and A� = La
� (Fig. 4(a4)). The

areas of both droplets do not change until the droplets coalesce
again, i.e. no further splitting occurs. The splitting is reversible
if the control loop is reversed and crosses the splitting line
La = A at exactly the same point.

Fig. 3 Dynamics of the ferrofluid droplets subject to the modulation loops a-i, and �i of Fig. 2. In each image we overlay an image of the droplet before
the entry into the excess region (brown), at the splitting line (purple) and after recombination at the end of the loop (turquoise). The different
images correspond to different loops depicted in Fig. 2b with loop a fentry = fexit = 4.4p/6, loop c fentry = 5.5p/6, fexit = 4.4p/6, loop e fentry =
6.5p/6, fexit = 4.4p/6, loop g fentry = 7.5p/6, fexit = 4.4p/6 loop i fentry = 8.5p/6, fexit = 4.4p/6 and the inverse loop �i fentry = 4.4p/6, fexit = 8.5p/6. For
loops a and c, two trivial modes coexist. In loops e and g, a transport mode into the �a2 direction coexists with a trivial mode. In loop i, a transport mode
in the �a2 direction coexists with a transport mode into the �a3 direction. The control loop of �i is the inverse of loop i with two transport modes along
a2 and a3. The red arrows show the transport directions during the splitting of the brown droplet towards the purple droplets. The green arrows show the
motion of the two purple droplets as they rejoin into the turquoise droplet. The blue arrow shows the adiabatic motion upon closing the loop in control
space by returning to the starting point. The displacement after one control loop is the coexistence of the two displacements D+ and D� of the two split
droplets. The black arrows are sketches of the motion of the droplets. The scale bar is 1 mm. A video clip showing the motion of the droplets is provided
in the ESI† (adfig3.mp4).
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In Fig. 2b we have color coded the splitting ferrofluid
droplets with a normalized RGB-color given by the triplet

ðR;G;BÞ ¼ 8

AUC
Aþ; ðAþ þ A�Þ=2;A�ð Þ; (3)

where AUC is the area of the unit cell, and the factor eight
accounts for the fact that the maximum subarea of a lemniscate
is one eighth of the area of the unit cell (see Fig. 4(b4)). We have
also color coded the excess region of C in Fig. 2b with the same
criterion but replacing the subareas A� with the subareas of the
lemniscates L�. Hence, the color of the experimental data
points at the splitting lines in Fig. 2b matches the color of
the control space only if A� = L�, i.e., if the subareas of the
theoretical lemniscates and those of the droplets are equal.
In Fig. 2b, the color of the experimental a-splitting points is
darker than the background, indicating that the experimental
droplets split later than predicted by the theory. This is pre-
sumably because adhesive forces of the droplet prevent early
splitting. The color discrepancy of the data below the B�a1
bifurcation points is likely due to scattering in the magnetiza-
tion of the NbB magnets forming the pattern. The finite size of
the pattern and the elevation of the particles above the pattern
also have an effect on the experimental measurements.

In the case A o L� (�Q-splitting), which occurs if the control
loop enters the excess region close to a B�Q bifurcation point,
the ferrofluid droplet assumes the shape of an equi-potential
line surrounding only the preexisting major minimum but not
the excess minor minimum. We show in Fig. 2c top the picture of
a droplet just after a �Q-splitting (see also Fig. 4b). The largest

areas of L� occur if the external field points at the south pole and
at the B�Q bifurcation points of C. Hence, a locally minimal
area Lmin

� occurs for external fields pointing along a longitude
that connects the south pole and one of the B�Q bifurcation
points. The subarea L� of the preexisting minimum of the
lemniscate shrinks as the control loop moves from the fence
towards the south pole (Fig. 4(b1)). At some point, the subarea
of the lemniscate L� equals that of the droplet LQ

� = A (provided
that Lmin

� o A o L�), Fig. 4(b2). There, the fluid completely fills
the subarea LQ

� while the other subarea L+ is completely empty.
When the major area of the lemniscate shrinks below the
droplet area, i.e. L� o A, then the droplets split into two
droplets of areas A� = L� and A+ = A�L� (Fig. 4(b3)). The fluid
in L� is expelled from the droplet through the saddle point and
flows down the path of the steepest descend into the basin of
the minor excess minimum. The areas of the droplet change
until the decrease of L� stops, Fig. 4(b4). The splitting process
is irreversible and both droplets cannot be rejoined in a
reversible way since the fluid in the excess minimum cannot
flow up the path of the steepest descent back into the preexist-
ing minimum.

We have placed �Q-splitting experimental points at the
location where the splitting starts. The points are colored
according to eqn (3) with A� being the subareas when the
interchange of fluid between A+ and A� stops. The agreement
with the theoretical prediction given by the areas of the
lemniscate (colored background) is excellent.

The splitting lines La = A, LQ
� = A and LQ

+ = A are the segments
of a closed curve that are joined at the fence of C. For A 4 Lmin

� ,
any closed curve of a modulation loop in C that penetrates the
excess region deep enough must also pass the splitting curve.
A nontrivial modulation therefore causes nontrivial transport
that is the coexistence of two topological displacements
weighted with the two split areas of the droplet. The splitting
areas A� and A+ continuously change along the splitting lines.
A video clip (adfig3.mp4) showing more details of the ferrofluid
transport is provided in the ESI.†

3.3 Doublet transport

We have experimentally studied the transport of two particles
per unit cell. The area A enclosed by the two wax/magnetite
spheres is smaller than the local minimum area, i.e. A o Lmin

� .
Hence, in contrast to the ferrofluid droplet, the Q-splitting
cannot occur for these doublets. Both the ferrofluid droplet
and the doublet exhibit a-splitting. A measurement of the
a-splitting line La = A is shown for the wax/magnetite doublets
in Fig. 2b. The doublets are transported together within the
major minimum if the control loop enters the excess region in
the vicinity of the B�Q bifurcation point. If the loop enters the
excess region in the vicinity of the Ba bifurcation point, then
a-splitting occurs and both spheres are separated. One sphere
is transported within the major minimum and the other one
within the minor minimum. Two transport directions coexist.

Hence, depending on fentry there are two different transport
modes for the doublets: (i) no splitting and (ii) a-splitting. The

Fig. 4 Schematics of the a-splitting (a) and the Q-splitting (b) of a
ferrofluid droplet. In each case a unit cell (hexagon) with the droplets
(red) and the lemniscates (blue) is represented for four different orienta-
tions of the external field along a control loop that enters the excess
regions of C near a Ba-bifurcation point (a1)–(a4) and a B�Q-bifurcation
point (b1)–(b4). The loop segments of both loops in control space are
indicated in the control space in the center of the image. The positions of
the large (small) magnets in the unit cell are shown in light (dark) gray.
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transition from one transport mode towards the other transport
mode occurs at the doublet bifurcation points Bdoublet that are
the intersections of the fence with the a-splitting line La = A for
doublets. Since the spheres have the same size, the areas of the
a-splitting transport are equal A� = A+ = A/2. Hence, the
experimental data points for doublet a-splitting all have
the same color, see eqn (3) and Fig. 2b. The color is darker
than the theoretical background color of the lemniscates.
Hence, splitting occurs later in the experiment than predicted
by the theory, presumably due to the dipolar attraction between
the two spheres as well as due to friction with the bottom
surface. Like the transport of a single sphere, the transport of
doublets is discrete and therefore topological.

Net displacement. We next analyze the net displacement
after the completion of one entire control loop for all three
types of objects: single spheres, doublets, and ferrofluid droplets.
For all objects, we define the vector of the net displacement

D as the area averaged sum of the two possible displacements.
That is

D ¼ DþAþ þ D�A�
Aþ þ A�

; (4)

where D� are the net displacement vectors of the two minima in
one control loop. Hence, D� are always lattice vectors and
D moves along a straight line between the two lattice vectors.

In Fig. 5a, we plot the net displacement of all magnetic
objects as a function of fentry for a family of loops with fexit =
4.4p/6 (loops similar to those in Fig. 2b). A video of the motion
is presented in the ESI† (adfig5.mp4). The net displacement is
zero when the loop encloses no bifurcation point. The displace-
ment moves along the straight lines connecting the sequence of
lattice vectors 0,�a2, �a3, a1, and 0 (see the gray arrows in the
center of Fig. 5a). The areas A+ and A� are continuous functions
of fentry for the ferrofluid droplet. In contrast, the transported

Fig. 5 Experimental and simulated displacements for the set of modulation loops characterized by fentry. (a) Experimental measurements of the net
displacement D of the steel sphere, the wax/magnetite doublet, and the ferrofluid droplets as a function of fentry for a family of loops with fexit = 4.4p/6.
The displacement changes correspond to the four gray arrows shown in the center of the image. The four gray shaded regions correspond to the arrows
of the same color in the inset. The displacement is a discrete function of fentry for the steel sphere and the wax/magnetite spheres but a continuous
function for the ferrofluid droplets. The jumps in the displacement occur when the loop crosses the bifurcation points in control space (the position of
the bifurcation points is indicated with vertical dashed lines). A video of the motion of a steel sphere, a wax magnetite doublet, and ferrofluid droplets
subjected to two different control loops is shown in the ESI† adfig5.mp4. (b) Net displacement of a collection of n = 2, 3, 4, and 5 particles, as indicated,
for the same family of control loops as in panel (a) according to computer simulations.
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areas A� for one steel sphere (a wax/magnetite doublet) can
only be integer multiples n = 0,1 (n = 0,1,2) of the area of one
sphere. Contrary to the ferrofluid transport, the sphere and
doublet net displacement change discretely with fentry.
The number of discrete steps for the doublets is twice that
of a single steel sphere. Hence, the transport of one or two
spheres is topological while the transport of the ferrofluid is
geometrical.

3.4 Multiparticle transport

What is the minimum number of particles required for having
geometrical transport? To address this fundamental question,
we have simulated the transport of multiple spheres using
overdamped Langevin dynamics (note that inertial effects are
negligible). Each unit cell is filled with exactly n particles. Each
particle is subject to the magnetic potential

U xA;HextðtÞð Þ / �HextðtÞ �Hp xAð Þ; (5)

where Hext(t) is the external field at time t and Hp xAð Þ is the
magnetic field, created by the pattern at the position of the
particle xA in action space A, see ref. 22 and 23.

The particles interact via the purely repulsive Weeks–Chandler–
Andersen potential

fðrÞ ¼
4e

s
r

� �12
� s

r

� �6
þ1
4

� �
r � 21=6s

0 r4 21=6s

8><
>: ; (6)

where r is the distance between the particles, e fixes our unit and
energy, and s is the effective particle length that we fix to s/a = 0.2
which is the same as in the experiments (transport of single
spheres). We integrate the equations of motion with a time step
dt/T = 10�5, with T being the period of a modulation loop. As the
transport is topological the detailed features of the simulated
particles are of minor importance and the behavior will not change
using somewhat different parameters for the simulations. Fig. 5b
shows the net displacement of n = 2, 3, 4, 5 spheres. The number of
plateaus in the displacement of n particles per unit cell is n times
the number of plateaus of a single sphere. This is true provided
that each unit cell is filled with precisely n particles since the results
depend on the initial distribution of particles among the different
unit cells. Our simulation results suggest therefore that if precisely
the same number of equally sized ferrofluid particles could be
deposited in each droplet, one would still observe topological
transport, albeit with very fine splitting. However, if there is
dispersion in the size of particles, the occupation of the unit cells,
the number of plateaus and splittings might be significantly
increased because the number of different geometrically distin-
guishable ways to split the droplets into subdroplets is increased.
For broad dispersions of sizes we would expect that the transport is
topological with a step size that scales with an other power than the
inverse of the occupation of the site. Here, we have investigated
only the case of monodisperse particles.

Note that the experimental fentry and the fentry in the
simulations of the doublet bifurcation points (at which the net
displacement jumps) differ (Fig. 5a and b). In the experiment, the

spheres do not only interact via excluded volume interactions, but
are also subject to long range dipolar interactions. We tried to
minimize the effect of dipolar interactions by using the wax/
magnetite composite spheres. We have understood the transport
properties under simple conditions, however an in depth under-
standing must also include studies of how the transport changes
with polydisperse particle sizes, varying the occupation of unit
cells, and with stronger dipolar interactions.

4 Conclusions

We have studied experimentally and with computer simulations
the transport of paramagnetic particles on top of a magnetic
lattice, driven by a uniform and time-dependent external magnetic
field. The external field performs periodic closed loops. We have
shown that increasing the number of particles within the unit cell
of the lattice changes the transport from topological towards
geometrical.

The transport as a function of a parameter that continuously
characterizes a family of control loops is discrete for low
particle densities and continuous for a macroscopic number
of particles per unit cell (ferrofluid droplet). More possibilities
to split or disjoin soft matter assemblies increase the number
of bifurcation points in control space with more transport
modes in action space that are separated by finer steps. It is
the number of possibilities that eventually changes the trans-
port from topological to geometrical.

A ferrofluid is a colloidal suspension of nanoparticles.
Rendering the transport of this soft matter system as robust
as the solid particle transport, the magnetic pattern must be
downscaled to the nanometer range. In such downscaling
studies, we have already shown the topological nature of the
transport of a colloidal dispersion of micron-sized magnetic
colloids.17,22
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Appendix

Here we provide some details of the experimental setup. The
magnetic hexagonal lattice (Fig. 1a) consists of large (l) and
small (s) cylindrical magnets of height h = 2 mm, diameters
dl = 3 mm and ds = 2 mm, and remanences m0Ml = 1.19 T and
m0Ms = 1.35 T, with m0 being the permeability of free space. The
resulting lattice with two primitive lattice vectors of length
a = 4.33 mm is mechanically metastable in zero external
magnetic field. Therefore, we need to fix the metastable
arrangement with an epoxy resin placed in the voids and in
the two dimensional surroundings of the pattern. The pattern
is then stable also in the presence of an external field. The
pattern is put on a support and covered with a transparent
PMMA spacer of thickness z = 1–1.5 mm (Fig. 1c). It may be
sprayed with PTFE to suppress wetting with the ferrofluid
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droplets. Additionally, a white illuminated foil can be placed
underneath the PMMA.

We either place one steel sphere of diameter 2r = 1 mm or
two spheres of diameter 2r = 0.5 mm consisting of a 10 : 1
weight percent mixture of wax and magnetite on top of the
spacer. Alternatively, we place two fluids, a nonmagnetic fluid
(Galden) and an aqueous ferrofluid immiscible with the Galden
at a volume ratio Galden/ferrofluid of 152 : 1, on top of the PTFE
and close to the compartment with a transparent lid.

The goniometer is set up at an angle of 45 degrees to ensure
that the relevant motion is not affected by the restrictions
of motion of the goniometer caused by the support. The two
large NbB-magnets that generate the external field have a
diameter dext = 60 mm, a thickness text = 10 mm, and
a remanence of m0Mext = 1.28 T and they are separated by a
distance 2R = 120 mm.
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