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We analyse liquid-crystalline ordering in vertically vibrated monolayers of cylinders confined in a
circular cavity. Short cylinders form tetratic arrangements with C, symmetry. This symmetry, which is
incompatible with the geometry of the cavity, is restored by the presence of four point defects with
total topological charge 4-4. Equilibrium Monte Carlo simulations predict the same structure. A new
method to measure the elastic properties of the tetratic medium is developed which exploits the clear
similarities between the vibrated dissipative system and the thermal equilibrium system. Our
observations open up a new avenue to investigate the formation of defects in response to boundary
conditions, an issue which is very difficult to realise in colloidal or molecular systems.

Introduction

Monolayers of vertically vibrated grains have been shown to exhibit a surprisingly rich behaviour [1-5],
including pattern formation in steady-state structures and non-equilibrium phenomena [6]. Even though
experimental control parameters, such as vibration frequency and amplitude, critically affect the observed
phenomena, in some regions of parameter space non-equilibrium behaviour is absent or not predominant, and
observed patterns resemble those typical of interacting particle systems in thermal equilibrium. Of particular
interest are the patterns exhibited by elongated particles with cylindrical shape, which project on a plane
approximately as hard rectangles (HRs); when their aspect ratio is moderate, these particles arrange into two-
dimensional monolayers with strong tetratic correlations [1, 7, 8]. The tetratic phase is a liquid-crystalline
arrangement with particles aligned preferentially along two equivalent perpendicular orientations with global C,
symmetry. Mean-field density-functional theories for rectangular particles in thermal equilibrium had
predicted the existence of this phase [9, 10], which was confirmed experimentally [11] and by simulation
[12, 13]. Itis remarkable that the same symmetry has also been observed in monolayers of vibrated granular rods
[1,7,8]. Some theoretical ideas have been advanced to explain general similarities between thermal and granular
systems [4, 14], but none of them is based on deep physical roots. In the case of systems exhibiting liquid-
crystalline order only plausible mechanisms that drive locally ordered arrangements of particles can be invoked
[8]. Also, from the experimental evidence, it is tempting to use arguments based on equilibrium entropy
maximisation and excluded-volume ideas to qualitatively explain the effective driving forces that lead to the
extended ordered domains observed in the non-equilibrium vibrated granular systems, like in the
corresponding equilibrium fluid of two-dimensional HR.

Before a complete theoretical framework for vibrated granular two-dimensional particles is formulated,
more evidence on their similarities with thermal particles is building up. In our previous paper [8], we briefly
reported on yet another intriguing behaviour of vibrated granular matter, this time in a monolayer of cylinders
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contained in a quasi-two-dimensional circular cavity. We showed that the tetratic monolayer exhibits four
defects symmetrically located at the corners of a square.

In the present paper we analyse this experimental system in detail and show that this behaviour is exactly
what is expected in an equivalent thermal system: our Monte Carlo (MC) simulations of such a system give rise
to exactly the same structure [ 15]°. Therefore the granular monolayer can respond to geometrical frustration
much like what one would expect in a thermal system, i.e. by creating localised defects that interact through the
elastic stiffness of the fluid tetratic medium. Also, we show that the defected structure is stable in time and occurs
in a range of densities. Finally, we propose a method to calculate the effective interaction between defects in an
equilibrium system, and from this the elastic stiffness modulus of the liquid-crystal medium. Assuming that the
granular system can be treated in the same manner, the resulting modulus turns out to be of the same order of
magnitude in both thermal and granular systems. Our conclusion is that not only their local order and their
response to geometric frustration in terms of defect formation are similar, but also that the elastic properties that
mediate long-range interactions between the defects are similar.

From the evidence gathered by previous experiments [1, 7, 8], it is clear that the configurations of cylinders of
low length (L)-to-width (D) ratio k = L/D change, as packing fraction ¢ = p LD (where p = N/Aisthe
effective density, with N the number of cylinders and A the area) is increased, from orientationally disordered, or
isotropic, fluid arrangements, to tetratic fluid configurations. Tetratic configurations persist for aspect ratios up
to x ~ 7; this limit is also predicted by MC simulations of HR in thermal equilibrium [7] and supported by
density-functional theories [16]. At even higher densities smectic fluctuations can also be seen in the
experiment [8].

Experiment

In the experiment (see [8] for more details) cylinders made of nonmagnetic steel with length 4 mm and width

1 mm (k = L/D = 4)are placed inside a horizontal circular cavity made of aluminium and covered from above
by a circular methacrylate lid resulting in a free height of 1.8 mm and radiusR = 7 cm (R/L = 17.5). The
sample is mechanically agitated using an electromagnetic shaker which generates a sine-wave vertical motion of
frequency v = 37 Hz and amplitude a, with an effective acceleration I = 472agv/g =~ 2, with gthe gravity’s
acceleration. The images were taken with a carefully collimated digital camera during the whole duration of the
experiment (roughly 3 h).

Particle identification (position and orientation) is done using the Image]J [17] software supplemented by
our own image processing code. Three types of particle arrangements are observed: isotropic, where particles are
disordered in both orientations and positions; tetratic, where particles show fluid behaviour but are oriented on
average along two equivalent, perpendicular directions; and smectic, with particles forming fluid layers. These
configurations are identified by means of order parameters g, = (cos n1), withn = 2, 4 (respectively uniaxial
and tetratic order parameters), and g, = (e!7") (smectic order parameter) on each particle, where 1 is the angle
of the particle with respect to the local alignment direction i, r its position and q a wavevector compatible with
the cylinder length. In locally tetratic configurations g, < g4andgs ~ 0;isotropic and smectic configurations
areidentified by g, ~ g4 ~ 0,95 =~ 0and g, > q4,¢q; > 0, respectively. Note that, in our experiments, extended
uniaxial nematic configurations are not formed for any value of aspect ratio and, due to geometric frustration
and excitation of vorticity smectic domains are limited in size and time [8].

Simulation

Two types of simulations have been performed in this work. First, we conducted equilibrium MC simulations on
asystem of HR that intends to mimic the experimental granular system, i.e. using the same particle aspect ratio,
cavity radius and packing fraction. Each particle is characterised by its position and orientation vector. N
particles are placed in a cavity of radius R/L = 17.5. The interaction between the particles and the cavityisa
hard potential acting on the corners of the particles. That is, the wall-particle potential is infinity if at least one
corner of the particle is outside the cavity and vanishes otherwise.

Following the ideas of [ 18] we initialise the system at very low packing fraction ¢ = 0.1 for which the
equilibrium state is isotropic. Next we adiabatically increase the number of particles in steps of Ay = 0.05 until
the desired packing fraction is reached. After every increment in the number of particles we run 10° Monte Carlo
Sweeps (MCS) to equilibrate the system. Each MCS is an attempt to sequentially move and rotate every particle
in the system. The maximum rotation and displacement each particle is allowed to perform in one MCS is

These defects have also been theoretically studied by MC simulations and elastic free-energy calculations on thermal systems with tetratic
ordering on spherical surfaces, resulting in the presence of eight disclinations located at the vertexes of an anticube.
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Figure 1. Colour maps of the local tetratic g4 and uniaxial g, order parameters. The colour of each particle represents the value of the
order parameter as specified in the central colour bar. Data for the cases ¢ = 0.70and 0.75, x = 4and 2R/L = 35.0 from (a) the
experiment, and (b) MC simulation. Particles have been slightly shortened to improve visualisation, and holes in (a) correspond to
particles that could not be identified by the imaging software.

recalculated in each simulation such that the acceptance probability of the motion is ~0.25. In order to insert
new particles we randomly select one particle in the cavity and create a replica with the same orientation but
displaced by ~D along the long axis. If the new particle overlaps with other particles or with the cavity we reject
the insertion and select another random particle. Once a new particle is accepted we perform a few hundred
rotations and translations on it. The orientational order parameters and other quantities of interest, such as the
positions of the defects, are calculated following the same procedures as for the experiments.

Second, we performed Brownian simulations on systems of four point particles inside a circular cavity.
These effective particles represent point defects of the real system. The effective particles interact with each other
via a repulsive pair potential u(s) = —c log(s/a), where ais an irrelevant length-scale, s is the interdefect
distance, and cis a strength parameter related to the stiffness coefficient. The use of a logarithmic pair potential
can be justified by invoking the interaction that results from the solution of the Frank elastic theory[19]. In the
elastic theory the constant a is the characteristic dimension of the defect core. However at the dynamical level
this constant does not play any role because forces are not affected by its value. Therefore weuseda = Rasa
length-scale. In addition, the effect of the cavity surface is introduced through a potential
V(r) = € exp[—A(R — r)], where ¢, and A are the strength and the inverse decay-length of the wall potential.
Defects are assumed to be subject to thermal fluctuations from particles in the tetratic medium, driven by a
thermal energy kgT. These fluctuations are taken care of by solving a Langevin equation mv; = F; — (v; + g,,
where m is an effective mass, v; the velocity of the ith defect, F; the force on the defect from the total potential
Vi(n) + 3 u(ry), ( afriction coefficient, and g, a stochastic white noise. Using the cavity radius R and the
parameter c as length and energy scales, respectively, the dimensionless discretised equation, in the non-inertial,
Brownian regime, becomes

it + h) = 1] (t) + VF@t) + 29T*n; (1), (1

where r*(t) is the position of the ith defect in units of R at time ¢, F.* is the force on the ith defect in units of ¢/R,
T* = kgT/c, where Tis an effective temperature, v = hc/R?(, h the time step, and 7, adimensionless Gaussian
noise of unit variance and zero mean. The free parameters of the model are T*, X¥ = AR,and ¢* = ¢/c. Since
the simulations involve only four particles they can be extended for several hundred millions time steps to collect
statistically significant information.

Results

Figure 1 shows particle configurations from (a) our experiment and (b) MC simulation. In each case two values
of the packing fraction, ¢ = 0.70 and 0.75, are shown. The two orientational order parameters, uniaxial ¢, and
tetratic g4, have been coded in false colour on each particle, using the same protocols in both experiment and
simulation. To obtain the order parameter fields at some point r we average over the particles located within a
circular region of radius £ = 4L centred at r as discussed in [8].
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Figure 2. Sampling of defect positions in experiment (left) and Monte Carlo simulation (right). Colour bars below indicate the
experimental time in hours, and the ‘MC time’ in units of 10° MC sweeps.

The structure in the cavity is similar in the two cases, experiment and thermal model. Also, tetratic
configurations are visible at the two densities, as indicated by the high values of the tetratic order parameter (see
central colour bar) and the low values of the uniaxial order parameter. In these ‘fluid’ configurations, which are
very stable, particles are globally oriented along two perpendicular directions, with approximately half of the
particles pointing in each direction. This balance holds locally, except in the high-density experimental
configuration shown, which exhibits clear patches where the g, order parameter is enhanced; these correspond
to domains where particles point along a common direction and organise into ‘smectic’ layers. Smectic domains
fluctuate in time in a sea of particles with tetratic order. When present, as in the configuration shown, they adopt
afour-fold symmetry. In the g, maps four regions containing particles with a g4-depleted neighbourhood are
also clearly visible. These regions are always present in this range of densities. They can be assimilated to point
defects of topological charge Q; = +1( = 1,...,4). The presence of these four defects restores the globally
tetratic symmetry, which is broken by the circular geometry of the cavity. The total charge +4 satisfies the
constraint imposed by the Gauss—Bonnet theorem for a medium with C, symmetry. Note that these numbers
fulfil the equation ), Q; = px, with p = 4 the p-fold symmetry of the tetratic phase, while x = 1is the Euler
characteristic of the disk [19]. The same four-defect structure is visible in the MC simulations. Indeed the
thermal system reacts to confinement in the same way as the granular system, i.e. by creating four point defects
symmetrically located next to the wall. In this case, however, smectic domains are never seen; instead, the whole
cavity is filled with a defected smectic configuration at higher densities (not shown). By comparing the uniaxial
and tetratic maps for density ¢ = 0.75, figure 1(a), we can see that the smectic domains in the experiments at
high densities are located between neighbouring defects and close to the wall. As shown in our previous work,
the presence of smectic textures at high packing fractions in granular rods with relative small aspect ratio is due
to strong particle clustering promoted by a local energy dissipation mechanism [8].

In order to understand the similarities and differences between the two systems in more detail, we have
analysed the average defect behaviour. First we computed the position r = (x, y) of the point defects using the
qa4 order parameter by identifying those particles with g, < 0.2 in strongly-developed tetratic configurations
such as the ones shown in figure 1. This protocol leads to four well-separated groups of particles associated with
each of the four regions where the tetratic order is depleted. The centre of mass of each group of particles, r, is
taken as the position of the corresponding defect. The same procedure is implemented in both experiments and
MC simulation.

In the following the lab frame is assumed to be placed at the centre of the circular cavity, and polar
coordinates r = (r cos 0, r sin 0) for the position of the defects are used to analyse various trends and
distributions. The unwanted tendency of the system to rotate [20], both in experiments and simulations, is
suppressed by calculating the instantaneous average of the azimuthal angle over the four defects and subtracting
this angle from the angular position of each defect. This process isolates the inherent fluctuations of the defects
about a mean position by referring their motion to a frame that rotates rigidly with the sample. Figure 2 shows
the sampled positions of the defects in this frame for both systems at packing fraction ¢ = 0.75 (in the following
results are presented only for this case, since all the densities explored, in the range ¢ = 0.70 — 0.75, are
qualitatively similar, while for ¢ > 0.75 large clusters in smectic-like configurations strongly compete with the
tetratic ordering). Defects are colour-coded according to either the experimental time or the ‘MC time’. The plot
shows that the system is being sampled ergodically. Sampling in the experimental system is comparatively
poorer.
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Figure 3. (a)-(c) Experimental positions of the four defects as a function of time (given in hours). Data for each defect are displaced for
clarity. (a) Azimuthal angles 6; in the lab frame for each defect (indicated as labels). The average angle is represented by the orange
curve. Dashed lines are linear fits, while labels in blue indicate the values of the slope in degrees per hour. (b) Same as in (a), but angles
referred to the instantaneous rotating frame (curve in orange in panel (a)). Labels indicate variance in each case. (c) Defect radial
distances r/R scaled with cavity radius. Dashed lines indicate the edge of the cavity in each case, while dotted lines correspond to the
two maxima of radial distance distribution, figure 4(b). Panels (d)—(f) show the same magnitudes as obtained from MC simulations. In
(d) labels indicate the absolute value of the slope in degrees per MCS, multiplied arbitrarily by a factor 2 x 10® to make it of the same
order of magnitude as in panel (a).

The time evolution of defect positions in the experiment and in the MC simulation are shown in detail in
figure 3. Panels (a)—(c) correspond to the experiment, while panels (d)—(f) show the MC results. Figure 3(a)
shows the time evolution of the defect angles 6, i = 1, ---, 4, and also of the average angle with respect to the lab
frame. In this particular experiment the sample rotates globally in one direction, but this is not the case in
general. Clearly defects slowly rotate with approximately constant angular velocity w and with superimposed
fluctuations. Particle tracking and velocity calculations indicate that this rotation is very rigid (i.e. linear velocity
is roughly proportional to radial distance). Some of these fluctuations are correlated, meaning that the solid-
body rotation occurs at nonconstant angular velocity w(t).

Figure 3(b) shows the angles 6; with respect to the frame with axes rotating with w(#); in this frame individual
defect fluctuations about their mean are isolated and can be properly analysed. The radial distance of the defects
also fluctuates in time, figure 3(c). In general defects stay close to the surfaces, which results from the repulsive
defect interactions (we further comment on this point below). MC simulation results, shown in figures 3(d)—(f),
are qualitatively similar. Note that the poorer experimental sampling due to practical time restrictions limit the
temporal extent of fluctuations with respect to the simulation.

To show the fluctuation dynamics of the defects in more detail, the distribution of azimuthal angle, f(6), is
plotted in figure 4(a). Defect libration closely follows a Gaussian distribution in both systems, but the MC result
presents a slightly broader distribution, although this is not conclusive due to the relatively poorer statistics in
the experiment. The radial distance distributions f; () in the granular and thermal systems are also qualitatively
similar, see figure 4(b). They are not Gaussian but bimodal. In the case of the experiment this is clearly seen in
figure 3(c), where the position of the two favoured distances is indicated by horizontal dotted lines. Our
interpretation for the bimodality is the following: even though defects repel each other, particles do form an
ordered surface structure that modifies the wall-defect interaction and prevents defects from reaching the wall.
However, when this surface layer is absent, defects can be in close contact with the surface, resulting in the
existence of two favoured distances from the wall. The thickness of the surface layer is mainly determined by the
density, but it differs substantially in the experiment and MC simulations, since the favoured particle surface
orientation is different. In the experiment, the orientation is mostly along the wall normal, with a thickness of
one or two particle lengths. In the MC simulations, by contrast, the orientation is mostly planar [18], with a
thickness of a few particle widths. In both cases the average defect position along the radial distance is
determined by the competition between the repulsive defect-defect interaction, which tends to push the defects
to the wall, and the repulsive surface-defect interaction, which depends on the particle orientation at the wall.
The final distribution is bistable, but the location of the two maxima is different in the experiment and in the MC
simulation because of the different particle orientation favoured at the wall.
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Figure 4. (a) Azimuthal angle distribution () from experiment (histogram) and simulation (black curve). (b) Radial distance
distribution f,(r) from experiment (histogram) and simulation (black curve), with respect to radial distance scaled with cavity radius.
(c) Distribution of the relative-distance between defects, f,(s), with respect to the interdefect distance scaled with cavity radius.
Histogram: experimental results. Black curve: simulation. Green curves in (b) and (c): Brownian simulation using the best-fit method
applied on f5(s), as explained in the text.

To better characterise the defect dynamics, we have also calculated the distribution of relative distances
between the defects, f>(s), which is shown in figure 4(c). As expected, it is also bimodal and exhibits two maxima,
corresponding to the nearest neighbour and next-nearest neighbour distances. The ratio between the two is very
close to /2, which confirms that the defects on average form a square configuration. This arrangement is again
the result of the repulsive surface—defect, and defect—defect interactions. The distribution can be regarded as a
superposition of two distributions located at the two characteristic distances.

The similarities between the MC simulations and the granular experiment shown above as regards the
distribution functions f; suggests that the non-equilibrium fluctuations of the order parameter field in the
experimental system can be assimilated to that of an effective system of Brownian point defects interacting
through a fluctuating elastic medium. The medium would be characterised by means of an elastic constant. The
mapping is natural for the equilibrium MC simulation. However, in the case of the experiment this mappingis
not clear. The connection can be realised by relating the fluctuations of the order parameter field in the
experiment, scaled with an effective temperature, to that of the equilibrium system, measured through the usual
elastic constant scaled with the temperature. Fluctuations in the experiment certainly depend on dissipation
mechanisms such as inelastic particle interactions or friction between particles. Also, the definition of
temperature in a granular system is controversial, and several choices can be found in the literature. Therefore
we suggest, as a working hypothesis, that the the strength of elastic interactions, scaled with an effective
temperature, in the granular and equilibrium systems, are similar. We used this scaled elastic constant
estimation as a way to quantify these interactions. The mapping is a mere hypothesis, and the precise value of the
scaled elastic constant in the granular system might be different to that obtained below. Therefore, our result
should be treated as a conjecture to be confirmed in the future by other direct methods.

We have implemented this procedure to extract information about the elastic stiffness coefficient of the
tetratic medium. In fact, the use of elastic-theoretical concepts in the context of granular monolayers is not new.
Galanis et al [3] applied elastic theory on the global orientation field of a vibrated monolayer to infer the elastic
behaviour of a monolayer consisting of very long rod in a uniaxial nematic configuration. However, defects were
omitted from the analysis. Here we proceed differently, and assume the defect dynamics shown in the previous
paragraphs can be modelled by equilibrium thermal fluctuations of an effective system of four Brownian
particles interacting through logarithmic potentials with no intervening medium. A numerical value for the
conjectured elastic stiffness coefficient K of the tetratic medium is then extracted by comparing the defect
distribution of the experiment to that of the thermal effective model, explored by means of Brownian
simulation.

Aspointed out before, the model has three free parameters: 7%, X = AR, and ¢* = ¢/c. To obtain their
values we focus on the relative-distance distribution f,(s) and define a best-fit function in terms of the distance-
integrated square difference between the experimental and the time-averaged Brownian distribution extracted
from simulation with fixed parameters T*, X¥, ¢*. The values of these parameters are then optimised by
minimising this function (note that the simulation results do not depend on the scaled inverse friction
coefficient 7). The optimised values are T* a2 0.07, X* &~ 25and ¢* ~ 1.0. The optimised f,(s) function is
shown in green in figure 4(c). The fitting is reasonable. Also in figure 4(b) the function f(s) from the Brownian
simulation is shown in green. Despite not being used as a target function, the comparison with the experimental
distribution fl(e"P) (r) isreasonable.

From the above optimised value of the parameters we obtain ¢ ™~ 14 kg T'. Since we expect the coefficient c to
be related to the elastic stiffness coefficient by c = 7 k*’K[19], where k = 1/4 is the winding number of each of
the four +1 defects, we obtain the elastic stiffness coefficientas K /kz T =~ 70. We note that, to accommodate the
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fine structure of the experimental distribution fz(e"p) (s5), we also used a bistable wall potential V(r). The resulting
value for the scaled K hardly changes, even though the fit certainly improves.

Itis interesting to note that the value of the scaled K obtained is remarkably close to the values of elastic
coefficients in two-dimensional nematic liquid-crystal phases. A two-dimensional nematic can only support
splay and bend distortions, with elastic coefficients K; and K3, respectively. In the tetratic phase symmetry
imposes K; = K5 = K. To our knowledge the only calculations of elastic constants in two-dimensional liquid
crystals focused on rather long rods (which can only exhibit uniaxial nematic ordering [21]) at relatively low
densities. The values have the same order of magnitude as the one obtained here. Obviously a fitting of the
Brownian model to the MC f,(s) function, which should be equivalent to a direct calculation of K, gives a similar
value. However we note that, in the experiment, smectic fluctuations in the regions between neighbouring
defects are frequent, as can be seen in figure 1. This adds an extra stiffness to the effective defect interaction, a
feature that could explain the differences observed in f, (s) between experiment and the equilibrium simulation.

Conclusions

In summary, we have shown that a vertically vibrated monolayer of granular rods can form configurations with
tetratic symmetries in a circular cavity. To restore the global symmetry broken by the cavity, the system develops
four localised defects close to the wall forming a square configuration. This is completely similar to the
behaviour of the equivalent thermal monolayer, which we have also investigated using MC simulation. In
addition, the defect fluctuations about their average positions in the experimental and thermal systems are
similar. We have exploited this observation to conjecture that a properly scaled elastic stiffness coefficient for the
granular monolayer should be similar to that of the equilibrium MC simulation. In order to exploit thisidea, a
Brownian dynamics simulation has been used to extract a value for such a scaled elastic constant. The resulting
value is close to those obtained from equilibrium theories on hard rods in two dimensions. Our results give
evidence that vibrated monolayers of dissipative particles, at least in some window of experimental conditions,
have similar ordering properties, respond equally to symmetry-breaking external fields, and would possess
elastic stiffness constants as in the corresponding thermal systems.

The fact that the number of defects and their spatial distributions depend on the symmetry of the ordered
phases (nematic, tetratic or smectic) and on the geometrical restrictions imposed by confinement, makes
granular rod monolayers an ideal tool to device well controlled experiments with the aim to study the
dependence of these properties on the system boundary conditions. For example the design of a ring-shaped
container could change the nature of stationary textures present in the system and also the distribution of defects
[22]. Note that, in experiments on colloidal or molecular systems, the presence of non-controlled
heterogeneities at particle length scales in the confining surfaces gives rise to important fluctuations that distort
the orientational director field and consequently the final distribution of defects. Moreover, the study of liquid-
crystalline textures and defects in granular systems is not limited to quasi-two-dimensional systems [23].
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