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Custom flow in overdamped Brownian dynamics
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When an external field drives a colloidal system out of equilibrium, the ensuing colloidal response can be
very complex, and obtaining a detailed physical understanding often requires case-by-case considerations. To
facilitate systematic analysis, here we present a general iterative scheme for the determination of the unique
external force field that yields prescribed inhomogeneous stationary or time-dependent flow in an overdamped
Brownian many-body system. The computer simulation method is based on the exact one-body force balance
equation and allows to specifically tailor both gradient and rotational velocity contributions, as well as to freely
control the one-body density distribution. Hence, compressibility of the flow field can be fully adjusted. The
practical convergence to a unique external force field demonstrates the existence of a functional map from
both velocity and density to external force field, as predicted by the power functional variational framework.
In equilibrium, the method allows to find the conservative force field that generates a prescribed target density
profile, and hence implements the Mermin-Evans classical density functional map from density distribution to
external potential. The conceptual tools developed here enable one to gain detailed physical insight into complex

flow behaviour, as we demonstrate in prototypical situations.
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I. INTRODUCTION

The controlled application of an external field is a powerful
means to drive colloidal systems of mesoscopic suspended
particles out of equilibrium [1,2]. The resulting complex
interplay of the equilibrium properties of the system with the
external perturbation is already present in Perrin’s pioneering
work on colloidal sedimentation [3]. Gravitationally driven
colloidal suspensions [4—6] remain to this day primary model
systems for studying structure formation phenomena. There is
a large spectrum of different types of further specific external
influence on colloids, such as the response of charged colloids
to external electric fields [7,8], and magnetic field-induced
transport of both diamagnetic and paramagnetic colloidal
particles [9,10] across a substrate, where the colloidal motion
was recently analysed in terms of the powerful concept of
topological protection against perturbation [11]. The external
magnetic fields in these setups varied periodically in both
space and time. Alternatively, exerting shearlike flow on col-
loidal dispersions provides in-depth insights into important
effects in fundamental material science, such as shear thick-
ening [12,13] and glass formation [14]. Furthermore, optical
tweezers form powerful and flexible tools for the generation
of complex colloidal flow patterns [15-17].

To systematically study the response of a soft material to an
external perturbation, one typically first fixes the external field
and then studies the resulting colloidal motion under the effect
of the field. Certainly, this concept is compatible with our
understanding of a causal relationship between forces and the
motion that they generate. If the external force field is static
and conservative, then the system will in general reach a new

*delasheras.daniel @ gmail.com
"Matthias.Schmidt@uni-bayreuth.de

2470-0045/2019/99(2)/023306(13)

023306-1

equilibrium state. This response of a complex system to such
an external influence might be highly nontrivial. As a result of
the action of the external potential, the system will in general
become spatially inhomogeneous. In seminal work, Mermin
showed for quantum systems [18], as Evans subsequently did
for the classical case [19], that a functional inversion of the
relationship between external potential and one-body density
distribution applies. Hence, reversing the above “causal” re-
lationship, a unique mathematical map exists from the one-
body density distribution to the corresponding external poten-
tial. This is an important and fundamental result of modern
statistical physics, which generalizes Hohenberg and Kohn’s
earlier result for quantum ground states [20]. The functional
relationship forms the basis of classical density functional
theory, which is used in practically all modern microscopic
theoretical treatments of spatially inhomogeneous systems
[21]. Once the external potential is specified, the Hamiltonian
is known (the internal interactions remain unchanged) and
hence all equilibrium properties of the system are determined
and become functional dependent on the density distribution.

In this work we address the functional map in nonequilib-
rium steady and time-dependent states in overdamped Brow-
nian many-body systems. We first set the desired colloidal
motion, as specified by both the velocity field (or, equiv-
alently, the one-body current distribution) and the density
profile, and then determine the specific external force field that
creates the prescribed motion in steady state. We develop and
validate a numerical iterative method that enables efficient and
straightforward implementation of this task.

That the map from motion to external force field exists and
that it is unique follows formally from the power functional
variational principle in general time-dependent nonequilib-
rium [22]. The functional relationship has not, however, been
explicitly demonstrated in an actual many-body system. Here
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we provide the first such demonstration, both for steady states
and for time-dependent nonequilibrium.

As a special case, we also apply the inversion method
to equilibrium systems. Here it allows to find the specific
conservative external force field that stabilizes a predefined
density distribution. As flow is absent and kinetic energy con-
tributions are trivial in equilibrium, this method also applies
to inertial (i.e., Hamiltonian) systems. An alternative iterative
numerical method that also implements the functional map in
equilibrium is presented in Ref. [23].

The conceptual progress in demonstrating the
nonequilibrium inversion map explicitly enables the practical
solution to the problem of generating tailor-made flow in
complex systems. In the method that we present, the sole
requirement is, besides the ability to freely control the external
force field, to be able to measure the internal one-body force
density distribution. This is a readily available quantity in
many-body simulations, and it is conceivably also accessible
in experimental work. We envisage that tailoring freely flow
on demand constitutes a powerful concept for the systematic
study of nonequilibrium physics. Here we investigate as a
concrete model problem, the task of collecting particles in
a certain region of space via a potential trap. The system
is initially a homogeneous fluid, and we (i) speed up the
natural dynamics by a given factor (chosen as 2 or 3 in our
examples) and (ii) demonstrate that any unwanted effects
due to superimposed external flow (e.g., due to convection or
sedimentation in the system) can be fully canceled.

The paper is organized as follows. In Sec. II we describe
how we obtain the iterative method, based on the exact
force balance relationship in overdamped Brownian dynamic,
covering nonequilibrium steady states, equilibrium, and
time-dependent nonequilibrium. In Sec. III we present results
for several model situations in which we custom-tailor the
flow in a many-body system of repulsive particles. Section [V
contains a discussion and provides some conclusions. Details
about particle current sampling and convergence properties
are given in the Appendices.

II. THEORY

A. Dynamical one-body force balance

We consider a system of N interacting Brownian particles
in the overdamped limit, where inertial effects are absent and
we neglect hydrodynamic interactions. The one-body density
distribution (“density profile”) at space point r and time ¢ is

given by
plr,1) = <Za(r - ri>>, (1)

where the angles denote a statistical average, the expression
inside the angles is the microscopic density operator, with
8(-) indicating the Dirac distribution, and r; denoting the
position of particle i = 1...N. In the Fokker-Planck picture,
the information required for carrying out the average is en-
coded in the many-body probability distribution W(r", ) of
finding microstate r¥ = r; ...ry at time ¢. The average is then
defined as

()= / dre w1, 2)

where the integral runs over configuration space, i.e., each
r; is integrated over the system volume. The time evolution
of W is determined by the Smoluchowski equation dW /dt =
— >, Vi-v;W. Here the configuration space velocity v; of
particle i is given on the many-body level by the instantaneous
relation

yVi = —kgTViIn W — Viu(r") + foxc (1, 1), 3)

where y is the friction constant against the implicit solvent,
kg is the Boltzmann constant, 7 denotes absolute temperature,
V; is the partial derivative with respect to r;, the interparticle
interaction potential is denoted by u(r"), and f..(r,t) is
the external force field, which in general is position- and
time-dependent. The three contributions on the right-hand
side of Eq. (3) correspond to thermal diffusion (first term),
deterministic motion due to interparticle interactions (second
term), and the externally imposed force (third term). This
formulation of the dynamics is analogous to the Langevin
picture, where instead of Eq. (2), the average is taken over
a set of stochastic particle trajectories for which a random
(position) noise provides the effects of thermal motion. The
corresponding discretized version is readily implementable
in Brownian dynamics (BD) computer simulations (details
of our implementation are given in Sec. III). Note that the
configuration space velocity v; defined in Eq. (3) is different
from the average over the fluctuating velocity over realization
of the noise, as represented in BD simulations.

We next supplement Eq. (1) by a corresponding one-body
current distribution, defined as

Jr, 1) = <Z 5(r — ri)vi>, “)

where v;, at time ¢, is given via Eq. (3). We show in detail
in Appendix A how a forward-backward symmetrical time
derivative of the particle positions can be used in BD to
represent v; in Eq. (4).

The density distribution Eq. (1) and the current profile
Eq. (4) are linked via the continuity equation,

dp(r,1) o

where V indicates the derivative with respect to r. The many-
body coupling in Eq. (3) arises due to the presence of the
internal interaction potential u(r"). On the one-body level,
it is hence natural to define a corresponding internal force
density field via

Fin(r, 1) = — < Z 3(r — l'i)ViM(l'N)>' (6)

Here contributions to the average occur due to two effects,
namely (i) due to the bare value of the internal force field
—Vu(™), but also (i) due to the probability of finding
particle i at the considered space point r, as measured by
the delta function. Averages such as Eq. (6) hence constitute
microscopically resolved force densities.

By multiplying Eq. (3) with 8(r — r;), summing over i,
averaging according to Eq. (2), and identifying the one-body
fields Egs. (1), (4), and (6), it is straightforward to show that

yJ = —kBTV,O + Fim + pfexta (7)
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which we use as a basis for the nonequilibrium inversion
procedure. Defining the microscopic velocity profile v(r, t)
simply as the ratio between current profile and density profile,

v=1J>/p, 8

allows us to rewrite Eq. (7), after division by the density
profile p, as

yv = —kgTVIn p + fiy, + fext. )

Here the internal force field f;,, is defined as the internal
force density Eq. (6) normalized with the density profile, i.e.,
fint(ra t) = Fim(ra t)/p(rv t)

BD computer simulations allow straightforward access to
the individual contributions to the force balance relationship
Eq. (9). Sampling the density profile is straightforward either
using the traditional counting method or more advanced tech-
niques [24,25]. The ideal (diffusive) force field —kgT V In p is
readily obtained by (numerical) differentiation of the density
profile. The internal force density field F;,; can be sampled
as an average over BD realizations of the time evolution, or
as an average over time when investigating steady states; note
that in BD one has direct access to the internal force on the
many-body level, —V,;u(r") in Eq. (6).

In typical applications, the external force field fex (1, f) is
prescribed and p(r, ) and v(r,?) emerge as a result of the
coupled many-body dynamics. In the following, we address
the inverse problem of prescribing p and v a priory and
calculating the required form of f.y that makes these fields
stationary, such that the prescribed field values are identical
to the true dynamical averages of density Eq. (1) and velocity
Egs. (4) and (8).

B. Inversion in nonequilibrium steady states

Let p(r) and v(r) be the predefined stationary (i.e., time-
independent) “target” profiles for density and velocity. To rep-
resent a valid steady state, the resulting target current profile
pv, cf. Eq. (8), must be divergence-free, V - pv = 0, which
follows from Eq. (5) and represents a necessary condition on
the allowed set of target functions p, v. The external force
field fex (r) that makes the target profiles stationary is obtained
from first rearranging Eq. (9) as

fexl = kBTV In p — Ling +yv, (10)

where the internal force field, fi,(r) = Fiy(r)/po(r), is the
only unknown quantity on the right hand side, as p and v are
known input quantities. Here Fj,(r) is from Eq. (6) in steady
state.

To determine fi,, and hence f.y, via Eq. (10), we proceed
in two steps. First, we present a fixed-point iterative scheme
to solve Eq. (10), in which the kth iteration step is defined via

£ = kgTVInp — 470 4 pv, (11)
where the targets, p(r) and v(r), are kept fixed for all steps
k. Here fi(nk[_l) = Fi(lft_l) /p, where Ffﬁl_ ' is the internal force
density sampled in the previous iteration step, k — 1. Data for
F*~1 was obtained from BD sampling under the prescribed

int
f(k—l)

external force field f.,; ’. To initialize the iteration scheme,

we set the external force field at step k = 0 simply as

£ = kzTVInp + yv, (12)

ext

which is the exact external force field for the case of an ideal
gas. Prescribing Eq. (12) allows to sample FI(I?[) in BD, and
then use fi(lﬁ) as the required input for iteration step k = 1
in Eq. (11). This completes the description the functional
inversion.

At each iteration step we also sample both the one-body
density and one-body current profiles, p® and J®; details on
how to sample the current in BD are provided in Appendix A.
As a criterion for judging the eventual convergence of féf[) to
the real external force field that makes the target density and
current profiles stationary, i.e., the solution of Eq. (10), we use
the difference between the target and the sampled profiles at
step k, i.e.,

Ap = f dr(p(r) — pP)?*/V < €, (13)
A= f drlI(®) — ORIV < e, (14)

where V = f dr is the system volume, and €,€, > 0 are
small tolerance parameters. Numerical details of our imple-
mentation are given in Appendix B.

We find that in practice the iteration method converges
reliably in all cases considered; results are shown below in
Sec. III. That a solution exists for f.x; and that it is unique are
nontrivial properties of our scheme. We expect existence and
uniqueness to hold, however, based on the power functional
variational framework [22], which is a novel approach for the
statistical description of the dynamics of many-body systems.
The central object of power functional theory (PFT) is a “free
power” functional R;[p, J] of the one-body density and cur-
rent or analogously, viz. Eq. (8), of the density and the velocity
field. R, has units of energy per time (power) and plays a role
analogous to the free energy functional (as detailed below)
in equilibrium. It consists of an ideal gas contribution (W,19),
an excess (over ideal gas) part due to the internal interactions
(W;*¢) and an external power (X;) contribution, according to
R, = VVtid + VVtexc _Xt-

PFT implies that f;,; is a unique functional of density and
current distributions, or equivalently of density and velocity
profile. In particular, fj;, can be expressed as a functional
derivative of the intrinsic excess (over ideal gas) free power
functional W[ p, J1, as

5VV[<’,XC[’O7 J]
8J(r,t)

where the density distribution p is kept fixed upon the
variation, at fixed time ¢.

Typically, one would split further into adiabatic and supera-
diabatic contributions, WS¢ = Foxe [p]+ P[p, J], where
Fexc[p] is the time derivative of the equilibrium excess (over
ideal gas) Helmholtz free energy functional, and P*[p, J] is
the superadiabatic contribution, which describes the genuine
nonequilibrium effects. This splitting offers great advantages
in terms of the classification of the different types of forces
that occur, but it is not required for our present purposes.

fint([pav]vr7t) = - ’ (15)
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We rather work directly with fj,,. Recall that this is directly
accessible via Eq. (6) in BD simulations.

The fact that f;,, is generated from a current-density func-
tional, via functional differentiation Eq. (15), implies that the
force field itself is a functional of density and current (or
velocity profile). Hence, Eq. (15) constitutes a unique map
from density and velocity to the internal force field,

fint(r) = int([pa V]’ r, t)a (16)

where the right hand side is the force field functional Eq. (15)
evaluated at the target profiles p and v; the left-hand side is
the corresponding (hitherto unknown) specific form of the
internal force on the left hand side of Eq. (10). Hence, by
inserting Eq. (15) into Eq. (10) we obtain the explicit form

foxe = kgTVInp —fie[p, VI + yv, a7

with the iteration procedure Eqgs. (11) and (12) being a
practical scheme for evaluating the right hand side. Note
that Eq. (17) is an explicit expression for f.; no hidden
dependence on f.; occurs on the right hand side. Recall that
from Eq. (15), the internal force field depends solely on the
“kinematic” fields p and v, but not on the external force
field. This completes the proof. Before presenting results,
we revisit first the equilibrium case and then generalize to
time-dependent nonequilibrium.

C. Inversion in equilibrium

In equilibrium, the velocity profile is identically zero, and
we therefore can simply set the target v(r) = 0 and prescribe
po(r) to find the corresponding external force field fex(r).
The external force field is necessary of conservative, gradient
form, fex (r) = —Vuex (), Where vey, is the external potential
energy. Clearly, there is no dependence on time, and, as
we show, one only needs to carry out equilibrium averages.
Hence, the method also applies to Hamiltonian systems, as
the kinetic contributions are trivial.

In equilibrium we can simplify Eq. (10) to obtain

fext = kBTV 11‘1,0 — lint» (18)

which constitutes an explicit expression for the specific ex-
ternal force field that generates the given target profile p in
equilibrium.

As it is the case in nonequilibrium steady state, the internal
force is unknown, but it can be found iteratively. The iteration
step is

() = kyTV In p(r) — £4 D(r), (19)

ext int
and the external force is initialized with the exact solution of
an ideal gas,
£9(r) = k3T V In p(r). (20)

ext

We then sample fi(not) in equilibrium, under the external force

fe(,?t) , and then iterate, on the basis of Eq. (19), until the
difference between the target and the sampled density profiles
is small, cf. Eq. (13). As only the internal force and the density
profiles are required, the sampling can be performed using BD
or molecular dynamics simulations. If one wishes to use the

Monte Carlo method, then one needs the actual value of the

potential vg;z instead of the force, fgf[) = —Vvéit) . In systems
that effectively depend on only one coordinate, say x, the
potential at each iteration can be easily obtained from the
internal force profile, by performing a one-dimensional spatial

integral

Vi (x) = —ksT In p(x) + f dxfiy V. @

In two- and three-dimensional systems a line integral or, more
generally, the use of an inverse operator V! is required to
obtain the potential from the force field. Hence, the situation
is similar to the one addressed in modern “force sampling”
methods that yield the density profile [24,25].

That the method converges to a unique external potential is
guaranteed by the Mermin-Evans functional map from density
profile to external potential [18,19]. In particular, the internal
force field is obtained as a functional derivative of the excess
free energy functional via

8 Fux
(o). 1) = —v 2eelP] (22)
dp(r)
Inserting this into Eq. (18) yields
§Fux
fou = kgT Inp + V;—C[m, (23)
o

which is an explicit expression for the external force field,
given p as an input, in analogy to the nonequilibrium case,
Egs. (15) and (17). For completeness, and briefly, Eq. (23) is
formally obtained from the more general Eqgs. (15) and (17)
by observing that in equilibrium §W,*¢ /8] = 8Fuc/8J, where
Fe = [ drY - V8Fu/p, cf. Ref. [22].

We next clarify the relationship to the method of Ref. [23].
Note that at any step in the iteration, given the external force

field fg:t_ D the internal force field may be written as

£470 = TV In(e* ") — £, (24)
in terms of the density distribution p*~D(r) at equilibrium
with that external force. Then Eq. (19) may be written as the
change in the force, along the iterative procedure,

fol —for = ksTVIn(o/p*™"), (25)

ext ext

that vanishes when the target density is achieved, p = p*~D.
The integration of Eq. (25), to get the change in external
potential, and the linear expansion

In(p/p*") = (""" —p)/p + ... (26)
give precisely the method proposed in Ref. [23].

D. Inversion in time-dependent nonequilibrium

To perform the inversion in time-dependent nonequilib-
rium, we carry out the procedure of Sec. II B at a discretized
sequence of (coarse-graining) times #; during the time evo-
lution. The method propagates the system forward in time, in
sync with the target time evolution. At each coarse-graining
time step the required external force field is obtained (via
iteration) such that the prescribed target density po(r, .,) and
velocity field v(r, #.¢) are identical to their respective values in
the target time evolution of the system. We interpolate linearly
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the values for the external force field between two consecutive
times, which we find sufficient for the test cases presented
below.

In detail, at each coarse-graining time step 7., we iterate the
value of the external field according to

£ (r, 1) = kgTV In p(r, 1eg) — £57(r, 1eg) + y V(T 1eg),
27)

where p(r, t) and v(r, t) are the target fields, which enter via
their values at time #.,. The time 7., is kept fixed under the
iteration k — k + 1 described by Eq. (27). For the first time
step we initialize the external force using the exact ideal gas
solution, Eq. (12). For the subsequent time steps we initialize
the iterative scheme using the solution of the previous time
step:

ERUr, teg) = foxi(r, 1), (28)

where 1., indicates the time step previous to Zc,.

The iteration method proceeds forward in time. To cor-
rectly account for memory effects, the many-body dynamics
evolves according to continuous, valid trajectories over the
entire time-dependent dynamics. In the BD simulations, this
requires to start a new coarse-graining time step using the
many-body configuration(s) obtained at the end of previous
coarse-graining time step. At the end of the process, the entire
field fox (1, ) is known, and as consistency check, can be input
into a “bare” nonsteady BD run, to validate that the targets
po(r, t) and v(r, t) are met during the entire course of time.

III. RESULTS

In the following we demonstrate that the straightforward
application of the method allows to cast new light on fun-
damental physical effects by studying a two-dimensional
model fluid of Brownian particles interacting via the common
Weeks-Chandler-Anderson potential [26], i.e., a purely repul-
sive, truncated-and-shifted Lennard-Jones (LJ) pair potential
[26],

¢(r) _ { 46[(%)12 _ (%)6 + }1] ifr < 1 (29)

0 otherwise,

where the parameters € and o set the energy and length
scales, respectively, and r indicates the center-center distance
of the particle pair. The cutoff distance r. = 2'/%¢ is located
at the minimum of the standard LJ potential, and hence the
interaction is purely repulsive.

The particles are in a square box of length L with periodic
boundary conditions along both directions. Using the standard
Euler algorithm, the Langevin equation of motion is integrated
in time via

At N
ri(t + At) =ri(t) + 7[—Vz‘u(l‘ ) + fexe(ri, ] + 1;(2),
(30)
where 3, is a delta-correlated Gaussian random displacement
with standard deviation «/2AtkgT /y in accordance with the
fluctuation-dissipation theorem. Here, At is the integration

time step that we set to At/t = 10™* with T = o2y /e the unit
of time; the friction constant is set to y = 1.

A. Effective one-dimensional system

A considerably large class of nonequilibrium situations is
effectively of one-dimensional nature, where both the density
profile and the current distribution depend only on a single
coordinate, say x, and the flow direction is along the x axis
(i.e., with no shear motion occurring). In the present two-
dimensional case, this implies that the system is homogeneous
in the y-direction. Then the steady state condition reduces to
the requirement of the current being constant, J(x) = Jye,,
where Jy = const and e, is the unit vector in the x direction.
Hence from Eq. (8) the velocity and the density profile possess
a reciprocal relationship: v(x) = Jy/p(x).

We study such an effective one-dimensional problem with
N = 30 particles in a two-dimensional square simulation box
of side length L/o = 10. We choose the target density profile
to contain a single nontrivial Fourier component, that modu-
lates the homogeneous fluid,

p(x) = ¢y sin®(wx/L) + ¢, (31)

with ¢j0? = 0.12 and ;0% = 0.24 such that [ drp(r) = N.
See the density profile in Fig. 1(a). The temperature is set to
kgT /e = 1.

Our inversion method facilitates the study of fundamental
aspects of driven systems. As an illustrative example, we
construct a family of steady states that share the same density
profile, cf. Eq. (31), but possess different values Jy of the
(constant) target current. In Appendix B we describe numer-
ical details of the concrete implementation of the iterative
procedure.

We show in Fig. 1 the external force field required to make
the target density profile Eq. (31) stationary, for a range of
different values of Jy. In Figs. 1(a) and 1(b) the final converged
density and current profiles are shown; these are indeed (nu-
merically) identical to their targets. We consider four steady
states with values of the current Joot = 0 (equilibrium),
0.1,0.5 and 1. The specific external force field required to
produce each such steady state is depicted in Fig. 1(c) for all
four cases. The force fields can be represented as the sum of
a spatially constant force offset plus a conservative potential
contribution. The constant offset drives the particle flow and
it can be calculated as the spatial average of the total external
force field. The conservative term generates the density mod-
ulation. As expected, in the equilibrium case (Jy = 0) only
the conservative term is present, and we find that the spatial
average of the total external force vanishes. In Fig. 1(d) we
show the external potential ve(x) that generates the conser-
vative force contribution. As a convention, we have introduced
an (irrelevant) shift of the energy scale, such that vex = 0
at x = 0 for all four cases. As expected, in equilibrium vey
possesses a minimum at the location of the density peak. It
turns out that to keep the density profile unchanged upon
imposing the constant flux of particles in the x direction, the
external potential changes its shape very substantially. Both
the minimum and the maximum move towards smaller values
of x, i.e., against the direction of the flow, upon increasing
Jo (note the periodicity in x). Clearly, this behaviour is a
direct consequence of keeping the density profile constant
while increasing the flow through this density “landscape.”
To rationalize this effect, consider first the case where an
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FIG. 1. One-body density (a) and current profiles (b), exter-
nal force field (c), and external potential (d) as a function of
the x-coordinate in a system with target density profile p(x) =
¢y sin(x/L) + ¢, with ¢;6% = 0.12 and ¢,0% = 0.24 after k = 40
iterations. The inset in (a) shows the difference between target and
sampled density profiles. Results are shown for different values of
the target current: Joot = 1 (blue dotted line), Joor = 0.5 (orange
dashed line), Joor = 0.1 (violet solid line), and Jyo7 = 0 (green
dot-dashed line), which is in equilibrium. The inset in (b) is a
close-view for Joot = 0.5. The system is two-dimensional and
homogeneous in the y direction with N = 30 particles in a square
periodic box of side L/o = 10 at kyT /e = 1. The data is obtained by
averaging over 25 BD realizations (MC realizations in equilibrium).

external potential generates the density profile, Fig. 1(a), in
equilibrium. If we now switch on a an additional constant
(positive) external force contribution, the result will be a par-
ticle flow and the density profile will respond by shifting the
density peak in the direction of the flow (results not shown).
In our system the density profile is rather kept constant and
the shifting of the density peak needs to be canceled by the
external conservative field, which hence necessarily develops
the observed shift in the direction opposite to the flow. Besides
quantifying the positional shift, cf. Fig. 1(d), we also observe
a marked increase in the amplitude of the external potential

contribution; hence stronger “ordering” forces, —V vy, are
required to overcome the homogenizing effect of the flow.

B. Two-dimensional system

The iteration scheme is general and it is not restricted
to effectively one-dimensional inhomogeneous systems. As
a proof of concept, we construct the external force field
that makes a two-dimensional density profile stationary. We
choose the target velocity field to be

iy = (—d1 sin;fny/L)) (32)

with dy, d, = const. As above, a companion target density
profile cannot be chosen arbitrarily, since the resulting current
must satisfy the steady state condition, V - pv = 0. Given
that Eq. (32) is divergence-free, V - v = 0, the steady-state
condition reduces tov - Vp = 0. As an immediate first choice,
we set

p(x,y) = N/L* = const, (33)

which trivially satisfies the steady state condition. Note that
Egs. (32) and (33) represent a conceptually highly interest-
ing case of a homogeneous, bulk-fluid-like one-body density
distribution, with “superimposed” flow Eq. (32) that is fully
inhomogeneous on microscopic length scales.

Furthermore, as a second choice together with Eq. (32), we
consider the target density profile,

p(x,y) = N/L* 4+ agcos 2nx/L +Y), (34)

Y =dycos(2ry/L), (35)

such that Y (y) is a spatially modulating function of the
given form, ay is a negative constant such that |ay] < N /L?
(to ensure that the p > 0, and dy = —d;/d,. Since Vp is
perpendicular to v for all r, it is straightforward to show that
Egs. (32), (34), and (35) also define a valid steady state.

For both target states (constant and nonconstant density
profile) we use the inversion method to find the external
force field that renders a stationary situation. We set N =
30, L/o = 10, and kgT /e = 0.5. For the target velocity pro-
file, we set dj = d, = t/o in Eq. (32). For the inhomoge-
neous density profile we set ag = 0.5N/L? in Eq. (34).

The two Cartesian components of the velocity profile,
obtained after 40 BD iterations of the inversion method, are
shown in Figs. 2(al) and 2(a2). The sampled velocity and
density profiles coincide with the target profiles within the
imposed numerical accuracy. The sampled density profiles are
shown in Fig. 2(bl) (constant density profile) and Fig. 2(cl)
(inhomogeneous density profile). The corresponding external
force fields are presented in Figs. 2(b2), 2(b3) and 2(c2),
2(c3).

For the case of constant density, the x component of the
external force field fe()ft), see Fig. 2(b2), is very similar in shape
and magnitude to the x component of the velocity profile,
Fig. 2(al). Given that the friction coefficient is setto y =1,
this means that fe(f[) generates the flow in the x direction (there
are small differences between fe(,ft) and ywv, related to the x
component of the internal force field). The y component of
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FIG. 2. x component (al) and y component (a2) of the velocity profile sampled after & = 40 iterations using BD simulations. (b1) Sampled
density profile for the steady state with constant density profile. x (b2) and y (b3) components of the external force field that produces the steady
state with constant density. (c1) Sampled density profile for the steady state with inhomogeneous density profile. x (c2) and y (c3) components
of the external force field that generates the steady state with inhomogeneous density. In both steady states we set N = 30, L/o = 10, and
kgT /e = 0.5. The bin size is set to 0.05 o in both directions and the origin or coordinates is located in the middle of the box. Results are

averages over 100 BD realizations.

the external force field, shown in Fig. 2(b3), shows a small
deviation from an average value which is consistent with
the value of the flow in y. This deviation is expected, since
we have imposed a constant density profile, and hence the
external force has to balance the migration force [27,28] that
results from the shear field imposed by v,. The y component
of the external force is inhomogeneous but the density profile
is constant. Hence, the internal force must cancel the action
of fe(xyt). This is a purely superadiabatic effect [29], which is
completely neglected in the widely used dynamical density
functional theory (DDFT) [30], which rather predicts internal
forces to vanish for situations of constant density. Extended

versions of DDFT have been recently proposed to try to
overcome these limitations; see, e.g., Refs. [31,32].

The target velocity profile is effectively one-dimensional,
and the target density profile is constant. As a result the exter-
nal force is also effectively one-dimensional. This is not the
case when the target density profile is inhomogeneous. Then
the x and y components of the external force field depend on
both coordinates; see Figs. 2(c2) and 2(c3). Now the external
force field generates the flow and also sustains the density
gradient. Clearly, the required force field, which generates the
fully inhomogeneous steady state, is very complex, and simple
physical reasoning, such as we could rely on in the former
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FIG. 3. Inversion in full nonequilibrium as demonstrated by dynamics of confinement. Density profile (left column), current profile (middle
column), and external force field (right column) as a function of x for three different situations. (a) Time evolution of the system, density (al)
and current (a2), after switching on a static external field (a3). At ¢ = 0 the system is in equilibrium with vanishing external field. Results at
four times are shown: 7, /t = 0.08, 7./t = 0.48, 13/t = 1.0, and ©4/7 = 2.2. At 74 the system is near equilibrium with the applied external
field (a3). Profiles are obtained by averaging over ~10® different trajectories. In panels (b) we show a system that evolves following the same
dynamics as in (a) but two times faster. The current (b2) is therefore twice as large as the current in the original system, and the required
external field (b3) is time-dependent. A movie showing a system that evolves three times faster is presented in the Supplemental Material [33].
Panels (c) show the time evolution in a system that reproduces the same dynamics as (a) but with a global motion toward the right (note that the
spatial average of the current (c2) at any time is Joot = 0.5). The required external field (c3) is time-dependent. The horizontal and vertical
dashed lines in the plots of the external field are drawn to help the comparison between systems. In all cases we set N = 30, L/o = 10, and

ksT /e = 1.0.

two cases, is insufficient to obtain even a qualitative, let alone
(semi-)quantitative rationalization of the occurring physics.

C. Dynamic confinement

While the above examples demonstrate custom flow for
steady states, we next turn to its implementation for full (time-
dependent) nonequilibrium situations, as laid out in Sec. I D.
We hence aim to show that the concept is general and valid
even for complex dynamics.

As a prototypical situation, we address the time evolution
of a two-dimensional system, which in its initial state is
a homogeneous equilibrium fluid, (with no external field
acting in this initial state). At time t = 0 we switch on a
conservative external field, which represents the potential trap
shown Figs. 1(c) and 1(d) for the equilibrium case (green
dot-dashed-line). Hence, the external force induces migration
of particles towards the center of the system along the x axis,
as shown in Fig. 3(a) for the density [Fig. 3(al)] and the

current [Fig. 3(a2)]. The system remains homogeneous in the
y direction.

The external field is static for r > 0, see Fig. 3(a3), and its
influence evolves the system from the homogeneous state to
a confined state that features a well-defined, peaked density
modulation, Fig. 3(al). After only few Brownian times, a
new equilibrium state is reached. The particle current almost
vanishes already at time 74/7 = 2.2; see Fig. 3(a2).

Using the time-dependent version of the custom flow
method described in Sec. IID, we chose to determine the
time- and position-dependent external force field, fox(?, x),
that speeds up the dynamics of the system by a factor o > 1.
That is, we find a system that evolves through the same
temporal sequence of density profiles as those in Fig. 3(a),
but doing so at a rate which is « times faster. Hence, in the
new “fast-forward” system the density profile p, at time 7 is
the same as the density profile in the original system at time
at. The current in the new system must be « times the current
in the old system due to the continuity equation. That is, in the
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new system:

Pa(t,x) = plat,x), Ju(t,x)=al(at,x), (36)

where quantities on the left (right) hand side refer to the new
(original) system. To find the external field that induces the
desired target dynamics, we discretize the time evolution at
intervals At /Tt = 0.01, i.e., on a scale that is 102 times larger
than the time step of the BD simulation A/t = 1074, At
each coarse-graining time 7., we run an iterative process to
find the desired external field at that time. We use a linear
regression to approximate the external field at every time ¢
between two consecutive coarse-graining times. The imposed
coarse-graining time is a good compromise between accuracy
and computational time. Since the external field does not
vary profusely during one time interval only a few iterations
(<10) are required at each 7.;. At each iteration we average
over 10° trajectories. Finally, we average the results over 50
independent simulation runs.

The dynamics of the system with fast forward factor « = 2
is shown in Fig. 3(b). The external field that is required
to speed up the dynamics by the chosen factor o =2 is
presented in Fig. 3(b3). As expected, f.x iS now a time depen-
dent field, the amplitude of which decreases monotonically
during the time evolution. In the limit ¢+ — oo the external
field converges to that of the original system, since the final
equilibrium state are required to be the same in both cases.
In the Supplemental Material [33], we show a movie of the
time evolution and the required external field in a system
which moves three times faster (¢« = 3) than the original
system.

As a further example, we conceive a system in which
the current is the same as in the original system (no speed
up, o = 1), except for a prescribed additive constant Jy. As
the divergence of the constant vanishes, it has no effect on
the dynamics of the density distribution via the continuity
equation. Hence, the density profiles of both systems are the
same at any time and the current profile in the new system
is J(t,x) + Jy, where J(t, x) is the original current. Again,
the confining trap is switched on at time ¢t = 0. The required
external field that produces such a dynamical evolution is
shown in Fig. 3(c3), in which we have set Joor = 0.5. The
external force field is again time-dependent. The extrema of
the force field are shifted with respect to their original location
in the case of the static force field. This was expected given
our above results for the steady state, Fig. 1. The amplitude
of the force and the magnitude of the shift vary in a nontrivial
way in time, as a result of a delicate balance between memory
effects and the amplitude of the density modulation. At t —
oo the system reaches the same steady state as that shown in
Fig. 1 (orange dashed line).

IV. DISCUSSION AND CONCLUSIONS

We have presented a numerical iterative method to sys-
tematically construct the specific form of the external force
field which is required to drive a prescribed one-body time
evolution in an overdamped Brownian many-body system.

The same scheme can be used to find the conservative po-
tential for which a given density profile is in thermodynamic
equilibrium. In equilibrium the method is not restricted to BD
systems.

An alternative approach has been previously developed for
the equilibrium case [23] (also in quantum systems [34]).
Although we have not studied the relative performance of the
two methods systematically against each other, preliminary
tests suggest that the current approach applied to equilibrium
is both faster and more reliable. Whether the present method
can or cannot be extended to quantum systems is an open and
interesting question.

In all cases that we have analysed so far, the iteration
process has reliably converged. Nevertheless, if the initial
guess for the external force is very far from the actual force
field, it might be necessary to improve the simple fixed-point
iteration scheme presented here to avoid possible divergent
trajectories (i.e., sequences of fe(,]ft)). Using, e.g., Anderson
accelerationlike methods should constitute a possible im-
provement of the method. Variations of the presented iterative
scheme, such as, e.g., defining £~ " = F%D/p® instead of
fi(nk[_l) = Fi(ﬁt_l) /p in Eq. (11), also converge to the desired
external force and might be useful in cases where convergence
issues occur, which might be the case, e.g., in the vicinity of
dynamical phase transitions.

As the method requires a discretization of the space coor-
dinate, it hence yields a discretized external force field. The
quality of the spatial discretization (e.g., size of the bins) is an
important parameter of the method. Although we have shown
only one- and two-dimensional mono-component examples,
the extension to three-dimensional systems and/or mixtures is
straightforward.

In all cases, whether time-dependent nonequilibrium,
nonequilibrium steady state, or in equilibrium, the custom
flow method requires to sample the internal force field. There-
fore, the practical implementation for hard-body systems is
not as straightforward as it is in the case of soft interparticle
potentials. For steady-state hard-body systems it might be
easier to extent the equilibrium approach of Ref. [23] to
nonequilibrium conditions.

The custom flow method allows complete control of the
dynamics of a given system in both steady state and full
nonequilibrium. Possible future applications include the in-
vestigation of time crystals [35,36] in BD systems, removal
of flow instabilities via the application of external fields in
a controlled manner, and obtaining a better understanding of
memory effects by, e.g., a systematic analysis of the external
fields required to speed up and/or slow down a given dynami-
cal process.

The success of the presented method validates the in-
herent concept of power functional theory [22] that the
microscopically resolved internal force field is a one-body
functional of the density distribution and the flow field,
with no explicit dependence on the external force field.
The conceptual implications of this situation are signifi-
cant. The custom flow method adds a pragmatic dimen-
sion to previously gained fundamental insights into structural
[29] and viscous [37] nonequilibrium response of complex
systems.
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APPENDIX A: SAMPLING THE CURRENT IN BROWNIAN
DYNAMICS SIMULATIONS

We briefly comment on three different methods to sample
the one-body current J(r) in Brownian dynamics simulations.

1. Method 1: Force balance equation

First, we propose here a new simple method to measure
the current based on the exact one-body force density balance
equation, Eq. (7). This equation provides an expression for J
that can be used to directly sample the current. We need to
sample: (i) the internal force density field F;,; as an average
over time (in steady state) or over many realizations (in case
of time-dependent situations), and (ii) the density profile.
Then, using the density profile one can calculate the thermal
diffusive term —kpT V p. Finally, the external force density
field can either be calculated using the external force and the
density profile (Fexq = pfext) or sampled directly during the
simulation.

2. Method 2: Numerical derivative of the position vector

The second method, proposed in Refs. [23,38], is based
on calculating the velocity of the ith particle, v;(¢), via the
numerical central derivative of the position vector,

ri(t + A1) — ri(t — Ar)
2At '

Due to the stochastic nature of the motion it is crucial to use
the central derivative to properly compute the velocity of the
particles, Eq. (Al). Forward and backward derivatives give
different results that are not consistent with the value of the
current obtained by the alternative methods presented here.

A spatially resolved average of v;, Eq. (Al), yields the
one-body current profile Eq. (4), which we rewrite more
explicitly as

vi(t) = (AL)

N
Jor, 1) = <Z Vi3 (ry(1) — r)>, (A2)

i=1
where (-) indicates an average over either many different
realizations or time in the case of a steady state.

To sample v;(¢) it is convenient to rewrite Eq. (A1) as [38]
Ar;i(t — At) + Ari(t)

2At '

where Ar;(t) =r;(t + At) —r;(¢). Plugging Eq. (30) into
Eq. (A3) results in

vi(t) = (A3)

1
vit) = 5[—V,»u<rN(t — At) — ViV (1))
A fox (15, — A1) + fexy (17, 1)]

1
+ E['h(l — Ar) +n;(0)]. (A4)

The spatially resolved average of »,;(¢) vanishes at any space
point since 3; is a Gaussian random force, and therefore this
average correlates the random force at time ¢ with the position
at the same time 7. In contrast, it is important to realize that
the spatially resolved average of 5;(t — At) does not vanish
in general, since it correlates the random force at time r — At
with the position at time ¢.

In the following we demonstrate in detail the equivalence
of method 2 with method 1 from above. To do so, we insert the
decomposition Eq. (A3) of the configurational velocity into
the definition Eq. (A2) of the current. This allows to split

N
Jae, 1) = (2At)1<z Ari(t — ADS(ri(t) — r)>

i=1

N
+ (2Az)"<z AT ()8 (ri(t) — r)>. (AS)

i=1
Here the spatial displacement from position at time ¢ to r + At
is given via Eq. (30) as
At N
Ari(t) = 7[—Viu(l' )+ fex (i, O] + 0;(0), (A6)
where all positions on the right hand side are evaluated at time

t. We can hence evaluate the second sum in Eq. (A5) with the
result:

Q) [Fine(r, 1) + p(r, Hfexe(r, 1)].

Here the random displacement has no effect, as #;(¢) is
uncorrelated with r;(¢) and (n,(¢)) = 0.

Addressing the first sum in Eq. (AS) requires to take into
account that the random displacement at the previous time ¢ —
At is correlated with position r;(¢), as is appearing inside of
the delta function. We hence Taylor expand the delta function
in n;(t — At), i.e., in the random displacement at the earlier
time. This gives to first order the result

8(ri(t) —r) = 8(ri(t) —r) — V&(ri(t) — r) - m;(t — At),
(A8)

(AT)

where have expanded around the position ri(z), which is
defined in such a way that it lacks the random displacement
from time t — At to time ¢, and hence

rj(t) = ri(t — At) + Arf'(t — At), (A9)

with Ar;iet (t — At) the deterministic displacement at the ear-
lier time, which is given by the first term in (A6) with all time
arguments shifted backwards by At, i.e., Ar?et(t — At) =
(=Viu@N) + £ (r;, t — At))At/y, where r¥ =1V (t — Ar)
and r; = r;(t — At). Note that the minus sign in the Taylor
expansion Eq. (A8) arises from the fact that V. = —V; in the
present case.

One can now carry out the average over the noise, using the
noise-noise auto-correlator (ni(t)nj(t’)) = 2kpT 8;;6;v 1At [y,
where 1 is the d x d unit matrix in (here) d = 2 space di-
mensions, and the times ¢, ¢’ are discrete values on a temporal
grid with grid spacing Atr. Up to higher orders in A¢, which
are irrelevant in practice, this creates the same term Eq. (A7)
again, but also a further contribution —(kg7T'/y )V p. Taken
together with Eq. (A7) this proves that Eq. (A5) is equivalent
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FIG. 4. One-body density profile (a), one-body current (b), and
external force field (c) as a function of the x-coordinate for different
number of iterations, k, as indicate in the legend of (a). The target
current is set to Joot = 0.1. The target density profile is p(x) =
c1sin®(wx/L) + ¢, with ¢;62 =0.12 and c,02 = 0.24, which is
practically identical to the sampled density profile after 40 iterations
(violet solid line). Two-dimensional system with N = 30 particles
in a periodic box of side L/o = 10 at temperature kzT /e = 1. The
data has been obtained by averaging over 25 BD realizations. The
total simulation time of iteration k of one BD realization is set to
7./T = 192% V3 with 15/t = 100. The bin size is Ax/o = 0.05.

to Eq. (7), and hence that the result for the current is the
same as in Method 1 above. Alternatively, expanding around
r;(t — At) in the total displacement Ar;(t — At) gives the
same result.

3. Method 3: Continuity equation

The continuity equation, Eq. (5) provides an alternative
route to compute the current in nonsteady state situations,
as shown in Ref. [23]. Having sampled the density profile
at different times ¢ and #’, we can compute the numerical
time derivative of the density profile, which must be equal to
the divergence of the current. In effectively one-dimensional
systems the result can be integrated in space and yields the
one-body current profile (line integrals or other inversion
methods are required in a higher dimensional space). This
method yields the current profile up to an additive constant.
If the actual value of the current at a given space point is
known, then one can easily determine the missing additive
constant. For instance, if the system is in contact with a hard
wall the current at the hard wall must vanish. To use this
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FIG. 5. (a) Scaled error of the density profile Ap* = ApL?c?
(green circles) and of the current profile AJ* = AJL>t? (yellow
squares) as a function of the iteration number k (bottom axis) and
the scaled simulation time of the iteration 7/t (upper axis) in
nonequilibrium steady state using BD simulations. (b) Scaled error
of the density profile Ap* = ApL’>c? as a function of the iteration
number k (bottom axis) and the number of Monte Carlo steps at
iteration 1/t (upper axis) in equilibrium using MC simulations.
In both panels, the data has been obtained by averaging over 25
realizations. Note the logarithmic scale of the vertical axis and of
the upper horizontal axis.

method we need to sample p at two times ¢ and ¢ separated
by a time interval A,. In our experience a value A; ~ 10?At
with At the time step of the BD simulation provides good
results. Method 3 is restricted to situations with no rotational
(i.e., divergence free) contribution to the current distribution.

We have checked the three methods presented above give
the same one-body current profile within the inherent numer-
ical accuracy of each procedure.

APPENDIX B: NUMERICAL DETAILS

We provide details of our precise implementation of the
iterative scheme. Each iteration step Eq. (11) of the nonequi-
librium steady-state inversion method requires carrying out
one BD simulation run for the given parameters and given ex-
ternal force field. Before acquiring the data, we let the system
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reach a steady state during 10%z. Then, at each iteration ,
we sample the internal force density during a given sampling
time 7. The sampling time has a direct impact on both the
statistical quality of the sampled internal force field (which is
required for the next iteration) as well as on the performance
of the method. Instead of using the same sampling time at each
iteration, we find it preferable to start with short simulation
runs and increase the run length at every iteration. Hence, at
iteration k, we fix the sampling simulation time t; to

T = ‘L'()2<k71)/3, (Bl)

i.e., we double the runlength every three iterations. The total
time of the first iteration is set to 7o/t = 100. Finally, we
average over several (10-100) realizations of the iteration
scheme, Eq. (11), to improve the statistics.

Figure 4 illustrates the iterative process for the effectively
one-dimensional system with target profile given by Eq. (31)
and target current Jyto = 0.1. Less than 10 iterations suffice
to get a very good estimate of the external force, and after
k = 40 iterations the sampled density, and current profiles

are almost indistinguishable from the corresponding target
profiles. The results have been obtained by averaging over 25
BD realizations of the iterative scheme. We show in Fig. 5(a)
the evolution of the error of the density and the current profile
during the iterative process, cf. Egs. (13) and (14).

For the equilibrium situation of the effectively one-
dimensional system shown in Fig. 1 (Jo = 0) we have used
Monte Carlo simulations to implement the iterative scheme,
cf. Egs. (19) and (21). For completeness, we also show the
efficiency of the method in equilibrium in Fig. 5(b), where we
plot the difference between the sampled and the error in the
density profile as a function of the number of iterations and
the number of Monte Carlo sweeps (MCS). Each MCS is an
attempt to sequentially and individually move all the particles
in the system. We find it convenient to increase the number of
MCS during the iterative process. We begin with 10* MCS at
iteration k = 1, and increase the number of MCS after every
iteration such that it doubles every three iterations. Before
acquiring data we equilibrate the system by running 10* MCS.
As in the nonequilibrium steady state case, we improve the
statistics by averaging over 25 realizations.
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