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Crossover from three- to six-fold symmetry
of colloidal aggregates in circular traps

T. Geigenfeind,a C. S. Dias, *bc M. M. Telo da Gama,bc D. de las Heras a and
N. A. M. Araújo bc

At sufficiently low temperatures and high densities, repulsive spherical particles in two-dimensions (2d)

form close-packed structures with six-fold symmetry. By contrast, when the interparticle interaction has

an attractive anisotropic component, the structure may exhibit the symmetry of the interaction. We

consider a suspension of spherical particles interacting through an isotropic repulsive potential and a

three-fold symmetric attractive interaction, confined in circular potential traps in 2d. We find that, due to

the competition between the interparticle and the external potentials, the particles self-organize into

structures with three- or six-fold symmetry, depending on the width of the traps. For intermediate trap

widths, a core–shell structure is formed, where the core has six-fold symmetry and the shell is three-

fold symmetric. When the width of the trap changes periodically in time, the symmetry of the colloidal

structure also changes, but it does not necessarily follow that of the corresponding static trap.

1 Introduction

The control over the self-organization of colloidal particles is
a problem of both fundamental and practical interest.1–10

One promising approach is the use of chemically or otherwise
patterned substrates, where the particle–substrate interaction
is spatially dependent and may even change with time. Spatial
patterns on substrates may be created using, for example,
lithographic methods,11,12 magnetic domains,13,14 chemical
coating,15–17 or DNA-mediated functionalization of interfaces.18

It has been shown that the equilibrium phases of colloidal
particles are affected strongly by substrates with spatial patterns.
For example, patterns may induce new surface phases19 and
crystalline structures,20 or affect the wetting properties of the
surfaces.21 The collective (non-equilibrium) dynamical properties
are also affected. For example, in the limit of irreversible
adsorption, a simple pattern of pits distributed in a square-
lattice arrangement induces either local or long-range order,
depending on the size of the pits and the distance between
them.22

For simplicity, most of the previous works have considered
isotropic particles but, in general, the interparticle interaction
is anisotropic. Anisotropy may result, for example, from the

individual particle shape,23–27 heterogeneous distribution of
charges,28–30 or functionalization of the particle surface.31–41

In these cases, the final structures should depend not only on
the symmetries of the pattern but also on those of the inter-
particle potential. In a recent study the equilibrium properties
of particles with three-fold symmetric attractive interaction
adsorbed on patterned substrates were considered.42 The
properties of the pattern strongly affect both the percolation
properties and the type of network in which the particles self-
assemble.

Here, we investigate how the dynamics of self-organization
of colloidal particles with anisotropic interparticle interactions
is affected by the presence of spatial patterns. These patterns
result from a square lattice arrangement of (Gaussian) attractive
traps with a characteristic width on an otherwise flat substrate.
We show that, the structure of the colloidal aggregates, on the
substrate, depends strongly on the width of the traps. We consider
also traps with a time dependent width and show that the
dynamics may differ significantly from that of the static traps.

We introduce the model and the relevant parameters in
Section 2. In Section 3 we present the results and we draw some
conclusions in Section 4.

2 Model

We consider a monodisperse suspension of spherical (colloidal)
particles, where the particle–particle interaction is a superposition
of an isotropic repulsion and a three-fold symmetric attraction.
Following ref. 43, we describe this pairwise interaction by
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decorating the surface of the spherical particles with three
patches distributed along the equator. The patch–patch attrac-
tive interaction has a Gaussian form given by,

Upatch/patch(rp) = �e exp[�(rp/s)2], (1)

where rp is the distance between the center of the patches, e is
the interaction strength that sets the energy scale, and s = 0.1
the width of the Gaussian in units of the effective particle
diameter dp (which sets the length scale).

The core–core interaction is repulsive and given by,

Upart=partðrÞ ¼
A

k
exp �k r� dp

� �� �
; (2)

where r is the distance between the center of the particles,
A = 0.25 (in units of e/dp), and k = 0.4 is the screening length
(in units of dp).

To confine the particles to the surface of a planar substrate,
we implemented the method described in ref. 43. The surface
pattern consists of attractive potential traps, distributed in a
square-lattice arrangement (see Fig. 1), with a Gaussian form,

Upart/trap(r) = �3e exp[�(r/RW)2], (3)

where e is the strength of the patch–patch interaction (see
eqn (1)) and RW is the width (range) of the trap. The potential
is truncated at a distance of 10 particle diameters (dp) from the
center of the trap. As shown in Fig. 1, although the minimum of
the traps is kept fixed, the effective potential landscape
depends not only on RW, but also on the distance between
the center of the traps, as in some regions the particles interact
simultaneously with more than one trap. Since the particle–trap
interaction is always attractive, this implies that the net force
acting on a particle is lower if the traps overlap. We impose
periodic boundary conditions along the x- and y-directions.
This pattern can be realized experimentally, for instance, using
a setup of multiple optical tweezers arranged on a square array,
by passing a laser beam through diffractive optical elements.44

To resolve the trajectory of individual particles, we perform
Langevin dynamics using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS).45 Particles are spherical
with mass m and inertia I and the patches on their surface have
negligible mass. The translational and rotational motion of the

particles is described by the following equations,

m _~viðtÞ ¼ �r~riU �
m

tt
~viðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

tt

s
~xitðtÞ; (4)

and

I _~oiðtÞ ¼ �r~yiU �
I

tr
~oiðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2IkBT

tr

s
~xirðtÞ; (5)

where, ~ni and ~oi are the translational and angular velocities of
particle i. The translational and rotational damping times are

given by tt ¼ 0:02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdp2

�
e

� �q
and tr = 10tt/3 for spherical colloids.

~xi
t(t) and ~xi

r(t) are stochastic terms taken from a truncated random
distribution of zero mean and standard deviation of one unit.46

U is the total potential with contributions from the particle–
particle and particle–trap interactions, and therefore it depends

on both the positions -
ri and orientations~yi of all particles i = 1. . .N

in the system. Note that, although the particles are on a planar
substrate, they can still rotate in three dimensions.

3 Results

Particles are initially distributed, without overlapping, uni-
formly at random on the substrate with a given particle number
density r, defined as the number of particles per unit volume.
Simulations were performed at a reduced temperature T* = kBT/e,
where T is the thermostat temperature, e the strength of the
patch–patch interaction and kB the Boltzmann constant. Unless
otherwise stated, we rescale the time by the Brownian time
tB = dp

2/Dt, where Dt is the translational diffusion coefficient
Dt = kBTtt/m. tB is related to the typical time taken by a particle to
diffuse in an area dp

2, considering an overdamped regime.47

All results are averages over (i) 10 different realizations and
(ii) all traps in each realization.

To evaluate the local structure formed by the colloidal
particles, we measure the local k-fold bond order parameter
of the i-th particle,48

fðiÞ
k¼f3;6g ¼

1

maxfNl ; kg
XNl

j¼1
e�ikyij

�����
�����; (6)

Fig. 1 Schematic representation of the attractive Gaussian potential traps distributed in a square-lattice arrangement. The traps are separated by a
distance of ten particle diameters (dp) and have a width (a) RW = 2, (b) RW = 4, and (c) RW = 6 in units of the particle diameter (dp). The potential strength is
in units of e.
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where Nl is the number of neighbors around the particle within
a cut-off radius rcut = 13 in units of the particle diameter (dp).
yij is the angle between the vector connecting particles i and j
and the x-direction (parallel to the substrate). k is a parameter
related to the local symmetry such that, f6 is one for perfect six-
fold symmetry and f3 is one for perfect three-fold symmetry.
We then define nk as the fraction of particles with a value of
fk above a specific threshold that we set to 1/2.

In what follows, we analyze first the dynamics at a tempera-
ture T* = 0.0625 which is below the 3D49 and 2D50 gas–liquid
critical temperature (note that the 2D bulk phase diagram may
be the most relevant for our system). Then, we consider traps
with a time-dependent width at temperatures T* = {0.0625,
0.075, 0.1, 0.125}, corresponding to a range of temperatures
encompassing the limits of irreversible and reversible bonds.

3.1 Constant potential traps

Fig. 2 shows the time evolution of the fraction of particles with
a local (a) three- (n3) and (b) six-fold (n6) symmetry, for
different values of the width of the traps (RW = 2, 4 and 6)
but the same initial particle number density r = 0.25. This
density was chosen to be well below the six-fold equilibrium
configuration and also below the percolation threshold taken
from ref. 42.

Let us focus on the case RW = 6 (squares), which is the largest
value that we have considered. Both n3 and n6 increase in time
as the particles accumulate in the potential traps. However, the
asymptotic value of n3 is about two orders of magnitude larger
than n6, as most particles have a local three-fold symmetry, in
line with the symmetry of the patch–patch attractive potential.
By contrast, when the width of the trap is reduced, the values of
n3 and n6 are comparable. For RW = 2, the fraction of particles
with a local six-fold symmetry is even larger than that of particles
with a three-fold symmetry (i.e., n6 4 n3). This can be explained
by the following mechanism. Due to the particle–trap inter-
action, particles are dragged towards the center of the potential
traps, increasing the local density there. The dragging forces
are stronger at lower values of RW (see eqn (3)). Thus, while for
RW = 6 the symmetry of the aggregates resembles that of
the particle–particle attractive potential, at a lower pressure that
corresponds to a lower packing, for RW = 2, the attractive particle–
trap forces favor an increase in the local density (packing), with a
corresponding increase of the local pressure in the region of the
trap, leading to the emergence of the six-fold symmetry.

Fig. 2 shows that the dynamics for traps with RW = 4 exhibits
a non-monotonic behavior of n3. Fig. 3 depicts snapshots of the

Fig. 2 Time dependence of the fraction of particles with a local (a) three-
(n3) and (b) six-fold (n6) bond order parameter above 1/2 for different traps
with different widths, namely, RW = {2, 4, 6}. Simulations are performed on
a substrate of linear size L = 40 (in units of the particle diameter dp). The
expected values of n6 for isotropic colloids (no patches) and traps of width
RW = {2, 4, 6} are, respectively, n6 = {0.47, 0.40, 0.04}.

Fig. 3 Bottom: Time dependence of the fraction of particles (n3) with a
local three-fold bond order parameter above 1/2 for traps with RW = 4 and
particle number density r = 0.25. Simulations are performed on a substrate
of linear size L = 40. Top: Snapshots of the structure at different times
(as marked in the bottom plot). Blue and green particles have a local
six- and three-fold bond order parameter above 1/2, respectively. In black
are the particles with none of the two local bond order parameters above
the threshold.
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structure at different instants, as pointed out in the plot in the
bottom of the same figure. Initially (in I), the particles are
randomly distributed in space, without overlapping. As the
potential traps are switched on, the particles are dragged
towards the center of the traps, establishing bonds with other
particles. The value of n3 increases (from I to II), since the
particle–particle attractive interaction favors three bonds per
particle (green particles). As more particles are attracted to the
traps (from II to III), the fraction of particles with six neighbors
in the center of the trap (blue particles) increases and the value
of n3 decreases. As the aggregates grow (from III to IV), the
outer particles are under weaker trap forces than the inner
ones, favoring again the particle–particle bonds over packing.

When RW = 4, the increase in n6 is in fact a transient.
As shown in Fig. 4, although n6 initially increases due to packing,
it eventually decreases at longer times. Particles in the aggregates
relax slowly to form domains with six-fold symmetry with strong
particle–particle bonds along the grain boundaries (see inset of
Fig. 4). As a result, the fraction of particles with six-fold symmetry
is reduced and the value of fk for a large fraction of the particles is
below the threshold for both k = 3 and 6.

Fig. 5 shows the number density (r) of particles around the
center of the trap for RW = 4. Fig. 5(a) and (b) show r(r,n3) and

r(r,n6), respectively. Note that the maxima of n3 and n6 occur at
different positions. This difference corroborates the hypothesis
that the local three- and six-fold symmetric structures are
formed in different regions. In the center of the trap, the
particles self-organize (pack) with six-fold symmetry, while in
the perimeter most particles form three bonds with other
particles. The time evolution of the radial distribution function
shows that, at early times, both structures form near the center
of the trap independently. As time evolves, a separation of the
structures is observed, with the six-fold structure in the center
of the trap and the three fold one in the perimeter. Asympto-
tically, the six-fold peak of the radial distribution function
decreases slightly due to the rearrangement discussed above.

3.2 Time-dependent potential traps

The results reported above suggest the design of a device, where
the symmetry of the aggregates may be dynamically switched
from three to six fold through the width of the potential traps.
The effectiveness of such a device, however, depends on how
the rate of the symmetry change compares to the different
timescales involved, namely those related to bond breaking/
formation and rotational/translational diffusion.47,51

We considered time dependent trap widths, as shown in
Fig. 6(a). We start with traps with RW = 2 and periodically
increase RW linearly to RW = 6 and then reduce it back (linearly)

Fig. 4 Time dependence of the fraction of particles (n6) with a local six-
fold bond order parameter above 1/2 for traps with RW = 4 and particle
number density r = 0.25. Simulations are performed on a substrate of
linear size L = 40. Snapshots are examples of clusters at the point where
the maximum occurs (left) and at the end of the simulation (right). Blue and
green particles have a local six- and three-fold bond order parameter
above 1/2, respectively. In black are the particles where none of the two
local order parameters are above threshold. The zoomed region at the top
shows the lines of defects (red-dotted line) between six-fold regions
(green-dotted line).

Fig. 5 (a) Number density of particles with a local six-fold bond order
parameter above 1/2, measured from the center of the traps at times
t = {0.20, 0.50, 1.13, 7.50}tB. (b) Number density of particles with a local
three-fold bond order parameter above 1/2, measured from the center of
the traps at times t = {0.20, 0.50, 1.13, 7.50}tB. Solid lines are averages over
neighboring points on the left and right to show the overall tendency.
Simulations were performed on a square substrate of size L = 40.
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to RW = 2. Let us discuss the dynamics at T* = 0.125, the highest
temperature considered here, here the oscillations have a
period n�1 = 20tB. In Fig. 6(b) we plot the fraction of particles
with a local six- and three-fold symmetry, as a function of time.
Here, for convenience, time is rescaled in units of the period
of the oscillation of RW (n�1). At this temperature, the local
structure oscillates between three-fold and six-fold symmetry,
with the same frequency and phase of Rw (see snapshots
Fig. 6(c) and(d)). A local minimum in n6 is observed at RW = 2
indicating that the optimal width of the trap to promote local
six-fold symmetry is around three particle diameters (dp).

Fig. 7(b) shows the time dependence of n6 (black squares)
for the same oscillating RW at a slightly lower temperature
(T* = 0.1). In this case, n6 oscillates with a period n�1 = 16tB, but
the phase is shifted by approximately 1/4 of the period. To inves-
tigate the dependence on the initial conditions, we applied the
same oscillating trap RW, starting at RW = 6 (red circles in Fig. 7).
The same shift is observed, and the periodic behavior at longer
times is clearly independent of the initial conditions.

When the temperature is reduced further, namely, T* = {0.0625,
0.075} (corresponding to periods of n�1 = {10, 12}tB), we observed a
similar shift in the (weaker) oscillations and a marked dependence

on the initial conditions. This is shown in Fig. 8, at different
temperatures (different symbols) and initial conditions (top and
bottom curves, respectively). The timescales of the relaxation
mechanisms (bond break/formation and translation/rotational
diffusion) depend strongly on temperature. Thus, at sufficiently
low temperatures, the rate of change of RW is too fast preventing
the particles to relax to the structures expected for the corres-
ponding static traps RW.

4 Conclusions

We have studied the dynamics of spherical colloidal particles on a
surface in the presence of circular potential traps. The attractive

Fig. 6 (a) Time dependent width of the potential traps (RW) that varies
periodically between two and six. (b) Time dependence of the fraction of
particles (n6) with a local six-fold and (n3) three-fold bond order parameter
above 1/2 for traps with the same oscillating width RW, particle number
density r = 0.3, and reduced temperature T* = 0.125. Here, time is rescaled
in units of the period of the oscillation. Simulations are performed on a
square substrate of size L = 40. The solid line is the equilibrium order
parameter for a potential of constant width RW = 4. Simulation snapshots
at the two limiting potential widths (c) RW = 6 and (d) RW = 2 for the
oscillating traps. Blue and green particles have a local six- and three-fold
bond order parameter above 1/2, respectively. In black are the particles
where none of the two local order parameters are above the threshold.

Fig. 7 (a) Time dependent width of the potential traps (RW) which varies
periodically between two to six. (b) Time dependence of the fraction of
particles (n6) with a local six-fold bond order parameter above 1/2 for
oscillating traps with initial widths RW(0) = 2 (squares) and RW(0) = 6
(circles) for a particle number density r = 0.3 and reduced temperature
T* = 0.1. Here, time is rescaled in units of the period of the oscillation.
Simulations are performed on a square substrate of size L = 40. The solid
line gives the equilibrium order parameter for a fixed potential of RW = 4.

Fig. 8 Time dependence of the fraction of particles (n6) with a local
six-fold bond parameter above 1/2 for traps with RW varying periodically
from two to six with initial trap widths RW(0) = 2 and RW(0) = 6 (same as
Fig. 7(a)) and reduced temperatures T* = 0.0625 (squares) and T* = 0.075
(circles), for a particle number density r = 0.3. Here, time is rescaled in
units of the period of the oscillation. Simulations are performed on a
square substrate of size L = 40.
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interaction between the particles has three-fold symmetry.
However, in the presence of potential traps, we observe a
crossover from the expected local three-fold symmetry to a
six-fold one when the width of the traps is reduced. For
intermediate values of the trap width, we find a core–shell
structure, where the symmetry in the core is six fold, while that
in the shell is three fold. Note that, for a fixed distance between
the centers of the traps, increasing the width of the traps
corresponds to smoothing out the external potential landscape.
Thus, we expect similar results when the strength of the
potential is changed, at fixed width.

For traps with oscillating widths, we find that the final
structure may deviate significantly from the thermodynamic
one, when the relaxation timescales are comparable to the
period of the oscillations. In this limit, the final structures
depend on the rate of change of the trap width, the thermostat
temperature, and the initial conditions.
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E. Eiser, Sci. Adv., 2016, 2, e1600881.
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