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We identify a structural one-body force field that sustains spatial inhomogeneities in nonequilibrium
overdamped Brownian many-body systems. The structural force is perpendicular to the local flow
direction, it is free of viscous dissipation, it is microscopically resolved in both space and time, and it can
stabilize density gradients. From the time evolution in the exact (Smoluchowski) low-density limit,
Brownian dynamics simulations, and a novel power functional approximation, we obtain a quantitative
understanding of viscous and structural forces, including memory and shear migration.
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It is a very significant challenge of statistical physics to
rationalize and predict nonequilibrium structure formation
from a microscopic starting point. Primary examples
include shear banding [1–3], where spatial regions of
different shear rates coexist, and laning transitions in
oppositely driven colloids [4,5], where regions of different
flow direction occur, as well as migration effects in
inhomogeneous shear flow [6–11]. In computer simula-
tions, discriminating true steady states from slow initial
transients can be difficult [12,13]. Often the nonequili-
brium structuring effects have associated long timescales
and strong correlations [14,15]. The underlying equilib-
rium phase diagram and bulk structure might already be
complex and interfere with the genuine nonequilibrium
effects [16,17].
To identify commonalities of all of the above situations,

we investigate here a representative model situation. We put
forward a systematic classification of the occurring non-
equilibrium forces and identify a structural force compo-
nent, which is able to sustain density gradients without
creating dissipation. The structural force is solely due to the
interaction between the particles, and it is hence of a nature
different than that of the lift forces in hydrodynamics. We
rationalize our findings by constructing an explicit power
functional approximation (15) below.
We restrict ourselves to overdamped Brownian dynamics

and consider the microscopically resolved position- and
time-dependent one-body density ρðr; tÞ and one-body
current Jðr; tÞ. Both fields are related via the (exact)
continuity equation ∂ρ=∂t ¼ −∇ · J; here ∇ indicates
the derivative with respect to position r. The velocity
profile is simply the ratio vðr; tÞ ¼ Jðr; tÞ=ρðr; tÞ.
The exact time evolution, with no hydrodynamic inter-

actions present, can then be expressed by the one-body
force balance equation

γv ¼ fint þ fext − kBT∇ ln ρ; ð1Þ

where γ is the single-particle friction constant against
the (implicit) solvent, fintðr; tÞ is the internal force
field, fextðr; tÞ is a one-body external force field that, in
general, drives the system out of equilibrium, and
−kBT∇ ln ρðr; tÞ≡ faidðr; tÞ is the adiabatic ideal gas con-
tribution due to the free thermal diffusion; here kB is the
Boltzmann constant and T is absolute temperature. The
internal force field fintðr; tÞ arises from the interparticle
interaction potential uðrNÞ, where rN ≡ r1;…; rN denotes
the set of all position coordinates, and it can be expressed
as an average over the interparticle one-body force
density “operator”

F̂int ¼ −
X
i

δðr − riÞ∇iuðrNÞ; ð2Þ

where the sum is over all particles, δð·Þ indicates the
Dirac distribution, and ∇i denotes the derivative with
respect to ri. Using the probability distribution ΨðrN; tÞ
of finding microstate rN at time t, the average is built
according to

fintðr; tÞ ¼ ρðr; tÞ−1
Z

drNΨðrN; tÞF̂int; ð3Þ

where the normalization is performed using the time-
dependent one-body density, defined as the average

ρðr; tÞ ¼
Z

drNΨðrN; tÞρ̂; ð4Þ

where ρ̂ ¼ P
iδðr − riÞ is the density operator.

The internal force field (3) can be further systematically
decomposed [18,19] into adiabatic excess (faxc) and super-
adiabatic one-body contributions (fsup), according to

fint ¼ faxc þ fsup: ð5Þ
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Here the excess (over ideal gas) adiabatic force field faxc is
the internal force field in a hypothetical equilibrium system
that has the same density profile as the real nonequilibrium
system at time t. Hence,

faxcðr; tÞ ¼ ρðr; tÞ−1
Z

drNΨad;tðrNÞF̂int; ð6Þ

where the average is over a canonical equilibrium distri-
bution Ψad;tðrNÞ for the (unchanged) interparticle interac-
tion potential uðrNÞ, but under the influence of a
hypothetical external (“adiabatic”) one-body potential
Vad;tðrÞ, which is constructed in order to yield in equilib-
rium the same one-body density as occurs in the dynamical
system at time t [18,19], i.e.,

ρðr; tÞ ¼ ρad;tðrÞ≡
Z

drNΨad;tðrNÞρ̂: ð7Þ

The excess adiabatic force field is hence uniquely specified
by (6) and (7); computer simulations permit direct access
[19]. The force splitting (5) then defines the superadiabatic
force field.
Here we demonstrate that fsupðr; tÞ further splits natu-

rally and systematically into different contributions, which
correspond to different physical effects. We have shown
before that fsupðr; tÞ contains viscous force contributions
[20]. These are of dissipative nature in that they work
against the colloidal motion (i.e., antiparallel to the flow
direction). Here we focus on the component of the super-
adiabatic force, which is perpendicular to the local flow
direction evðr; tÞ, where v ¼ jvjev; note that also Jkev. We
hence define the (normal) structural force field f⊥supðr; tÞ as
the component perpendicular to the local flow direction,

f⊥sup ¼ fsup − fsup · evev: ð8Þ

In contrast to the viscous force, the structural force is
nondissipative, since the associated power density vanishes
identically everywhere, J · f⊥sup ¼ jJjev · f⊥sup ¼ 0.
The structural force plays a vital role in nonequilibrium,

as it can stabilize density gradients. In order to demonstrate
this effect, we consider a two-dimensional toy system of
Gaussian core particles [21] in an inhomogeneous external
shear field. The pair interaction potential is ϵ expð−r2=σ2Þ,
where r is the distance between both particles, and ϵ > 0 is
the energy cost at zero separation. We use ϵ and σ as the
energy and the length scale, respectively. N particles are
located in a square box of length L with periodic boundary
conditions and (unit vector) directions ex and ey along the
square box. The driving occurs along ex according to an
inhomogeneous external shear field,

fextðy; tÞ ¼ f0 sinð2πy=LÞθðtÞex; ð9Þ

where f0 is a constant that controls the magnitude of the
driving force, and θð·Þ indicates the Heaviside (step)
function, such that the force is instantaneously switched
on at time t ¼ 0. Ultimately, the system reaches a steady
state with a density gradient along ey, i.e., ρðr;∞Þ ¼ ρðyÞ,
as we will see below. The density gradient is then solely
sustained by the structural force f⊥sup.
In order to study the system on the Fokker-Planck level,

we solve numerically the exact many-body Smoluchowski
equation (SE) for overdamped Brownian motion. The time
evolution of the probability distribution Ψ is given exactly
by the many-body continuity equation

∂ΨðrN; tÞ
∂t ¼ −

X
i

∇i · viΨðrN; tÞ: ð10Þ

where vi is the velocity of particle i, given by the force
balance

γvi ¼ −∇i½uðrNÞ þ kBT lnΨðrN; tÞ� þ fextðri; tÞ: ð11Þ

We solve (10) and (11) numerically using a (standard)
operator splitting approach [22]. Each spatial coordinate is
discretized in increments Δx ¼ σ=5; we use a time step
Δt=τ ¼ 5 × 10−3 with timescale τ ¼ σ2γ=ϵ. This method
provides exact results of the nonequilibrium dynamics up
to numerical inaccuracies. For d space dimensions, the
dimension of configuration space is Nd, which limits the
applicability of the method to systems with small numbers
of particles. Here, we consider N ¼ 2 in d ¼ 2, which
renders the numerical field Nd ¼ 4 dimensional; hence,
including time, we solve a 4þ 1-dimensional numerical
problem. As we show, despite the limited number of
particles, all relevant forces are present.
In order to analyze larger systems, we use Brownian

dynamics (BD), i.e., integrating in time the Langevin
equation of motion, which corresponds to (10) and (11),

γ
driðtÞ
dt

¼ −∇iuðrNÞ þ fextðri; tÞ þ χ iðtÞ; ð12Þ

where χ i is a delta-correlated Gaussian random force. We
use a time step dt=τ ¼ 10−4 and histogram bins of size
Δx ¼ σ=20. Density and force density profiles are obtained
by averaging over a total time of ∼109τ in steady state.
In both SE and BD we use the iterative scheme of

Refs. [19,23] to construct the adiabatic external potential
Vad;tðrÞ. The superadiabatic force then follows immediately
from (5) since both fint and faxc can be directly calculated
(sampled) in SE (BD). We have used the recently developed
force sampling method [24] to improve the sampling of the
density profile in BD. We expect, on principal grounds, that
the SE and BD results agree (for identical values of system
size and particle number, here N ¼ 2).
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A schematic showing all forces in steady state is shown
in Fig. 1(a). The stationary density and force profiles
obtained by solving the Smoluchowski equation (N ¼ 2)
and using BD simulations (N ¼ 25) are shown in Figs. 1(b)
and 1(c), respectively. A net flow exists along þex for
y < L=2, since the external force is only partially balanced

by a superadiabatic force of viscous nature fksup along −ex
(see middle panels). Hence, in this situation, ev ¼ ex. The
viscous force has roughly the same shape as the external
force but with reversed direction. The inhomogeneous
external force (9) fextðyÞ creates a density gradient in ey
(see top panels), since the particles migrate to the low shear
rate regions. The adiabatic ideal (i.e., diffusive) and
adiabatic excess (i.e., due to internal interaction) forces
act along ey and both try to relax the density gradient (see
bottom panels). Both adiabatic forces are, however, exactly
balanced by a structural superadiabatic force f⊥sup. The
presence of the structural force hence renders the inhomo-
geneities of the density profile stationary in time.
We next analyze the system more systematically by

comparing the behavior of the structural force to that of the
viscous force. We show in Fig. 2(a) the amplitudes of the

viscous force f̂ksup and the structural force f̂⊥sup (measured
from maximum to baseline) as a function of the amplitude
of the external driving f0. For small driving, the viscous
force scales linearly with f0. This behavior is expected,
since for weak driving the velocity is proportional to the

strength of the driving and the viscous force is proportional
to the velocity (Newtonian rheology). The structural
force, on the other hand, scales quadratically with f0
and hence also with the velocity in the small driving
regime. Both forces saturate for high values of f0 [see

the inset in Fig. 2(a)]. Figure 2(b) shows f̂ksup and f̂⊥sup as a
function of the average density ρ0, revealing again profound
differences between viscous and structural forces. The
viscous force increases linearly with increasing ρ0 at low
densities and it saturates at high densities. In contrast, the
structural force is nonmonotonic and exhibits a maximum
at an intermediate density.
We rationalize these findings by developing a theory

within the power functional approach [18]. Here the
adiabatic and the superadiabatic contributions to the inter-
nal force field (5) are obtained via functional differentiation
of two generating functionals,

faxcðr; tÞ ¼ −∇ δFexc½ρ�
δρðr; tÞ ; ð13Þ

fsupðr; tÞ ¼ −
δPexc

t ½ρ; J�
δJðr; tÞ : ð14Þ

Here Fexc½ρ� is the intrinsic excess (over ideal) Helmholtz
equilibrium free energy functional of density functional
theory, and Pexc

t ½ρ; J� is the excess (again over ideal)

(a) (b) (c)

FIG. 1. (a) Illustration of the setup of a sinusoidal inhomogeneous shear flow induced by the external force field (9). Shown are the
superadiabatic viscous force, which opposes the externally induced flow, the adiabatic excess, and ideal forces, which tend to relax the
density gradient, as well as the superadiabatic structural nonequilibrium force, which restores the force balance in the y direction.
(b) Steady-state density and force profiles obtained by numerically solving the Smoluchowski equation in a system with N ¼ 2,
L=σ ¼ 10, and kBT=ϵ ¼ 0.4. (Top) Density profile for average density ρ0 ¼ N=L2 ¼ 0.02σ−2 as a function of y. (Middle) Forces acting
along ex as a function of y: external force fext of imposed amplitude f0 ≈ 0.25ϵ=σ (green dashed line) and superadiabatic viscous force

(solid blue line) fksup. (Bottom) Forces acting along ey as a function of y: adiabatic ideal (diffusion) faid (orange dashed line), adiabatic
excess faxc (violet dotted line), and superadiabatic structural force f⊥sup (solid red line). (c) Same as (b) but for a system with N ¼ 25,
L=σ ¼ 10, ρ0 ¼ 0.25σ−2, kBT=ϵ ¼ 1, and f0 ≈ 3.14ϵ=σ. Data obtained using BD simulations. Forces marked with an asterisk in (b) and
(c) have been multiplied by 103 for clarity. The black circles in (b) and (c) indicate the theoretical prediction (18) of the superadiabatic
viscous and structural forces.
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superadiabatic functional of power functional theory [18].
Dynamical density functional theory (DDFT) [26–28] is
obtained by setting Pexc

t ¼ 0; hence, no superadiabatic
forces (neither viscous nor structural) occur in DDFT. In
Ref. [20], using a change of variables in power functional
theory from the current J to the velocity gradient ∇v, it is
shown that the excess superadiabatic functional can be
represented as a functional of ∇v. Following the same
line, we consider a temporally non-Markovian but spa-
tially local form,

Pexc
t ¼

Z
dr

�Z
t

0

dt0ntt0 ð∇ × vÞ · ð∇ × v0Þ

−
Z

t

0

dt0
Z

t

0

dt00mtt0t00 ð∇ · vÞð∇ × v0Þ · ð∇ × v00Þ
�
;

ð15Þ

where we have used the shorthand notation v0 ¼ vðr; t0Þ and
v00 ¼ vðr; t00Þ. The factors ntt0 and mtt0t00 are density-depen-
dent temporal convolution kernels; the subscripts indicate
the time arguments. Here the dependence is on the
differences t − t0 and t − t00; the specific form of the kernels
will depend on the form of the interparticle interaction
potential uðrNÞ. In (15), we have left away bilinear and
higher contributions in ∇ · v [20]; these are important for
compressional flow, but not for the present shear setup.
Furthermore, as ρ is practically constant in the cases
considered, contributions in ∇ρ have also been omitted.
The superadiabatic force field is then obtained by

inserting (15) into (14), where the derivative is carried
out at fixed density, and hence δ=δJ ¼ ρ−1δ=δv.
Furthermore, the spatial derivatives in (15) can be suitably
rearranged by (spatial) integration by parts. The resulting
force density is

ρfsupðr; tÞ ¼
Z

t

0

dt0∇ · ntt0∇v0

−
Z

t

0

dt0
Z

t

0

dt00∇mtt0t00 ð∇ × v0Þ · ð∇ × v00Þ:

ð16Þ
In steady state and for the case of constant density profile,
(16) reduces to

ρfsupðrÞ ¼ η∇2v − χ∇ð∇ × vÞ2; ð17Þ

where the prefactors η ¼ limt→∞
R
t
0 dt

0ntt0 and χ ¼
limt→∞

R
t
0 dt

0 R t
0 dt

00mtt0t00 are moments of the convolution
kernels, which depend on the overall density. We can
identify η with the shear viscosity [20], such that the first
term in (17) represents the viscous force. From carrying out
the normal projection (8), the second contribution in (17)
yields the structural force f⊥supðr; tÞ. Note that, while the
forms (16) and (17) could possibly be postulated based on
symmetry considerations alone, in the current framework,
the generator (15) constitutes the more fundamental object,
as the form of the force field follows via the functional
derivative (14). Note that for the ideal gas (u ¼ 0) Pexc

t ¼ 0
and fsup ¼ 0 by construction [18].
In accordance with our numerical results, we assume that

the flow field is dominated by the external force; hence, we
approximate (1) by vðy; tÞ ≈ fextðy; tÞ=γ. Insertion of (9)
into (17) then yields

fsupðyÞ ¼ −
f0ηk2

γρ
sinðkyÞex þ

f20χk
3

γρ
sinð2kyÞey; ð18Þ

where k ¼ 2π=L. In Figs. 1(b) and 1(c) we show the
comparison between the predicted (black circles) and the
computed superadiabatic forces using SE and BD (solid

(a) (b) (c)

FIG. 2. Scaled amplitude of the superadiabatic forces f̂α�sup ¼ 103f̂αsupσ=ϵ with α ∈ fk;⊥g, as a function of (a) the amplitude of the
external driving force f0, (b) the average density ρ0 ¼ N=L2, and (c) the time t. (a) Results for L=σ ¼ 10, N ¼ 2, and kBT=ϵ ¼ 0.4. (b)
Results in a system with L=σ ¼ 10, f0 ≈ 3.14ϵ=σ, kBT=ϵ ¼ 1, and varying N. (c) Note the logarithmic scale in the main plot. The
external driving force is switched on at t ¼ 0. Results for L=σ ¼ 10, N ¼ 2, kBT=ϵ ¼ 0.4, and f0 ≈ 0.25ϵ=σ. In all panels, the viscous
(structural) superadiabatic force is represented with blue circles (red squares), as indicated in the upper legend. Full (empty) symbols
correspond to SE (BD) calculations. The blue dashed (red dotted) line indicates a linear (quadratic) fit to the data, as detailed in the
Supplemental Material [25]. Solid lines are guides to the eye. The inset in each figure shows a linear plot of the same quantities as those
in the main plot, but over an extended region.
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lines). The values of the response coefficients η and χ
[cf. (18)] have been adjusted to fit each amplitude; see the
Supplemental Material [25] for details.
The theory then predicts the shape of both viscous and

structural forces without further adjustable parameters, and
it is in excellent agreement with the results from SE and
BD. In addition, the linear (quadratic) scaling of the viscous
(structural) force with the velocity [Fig. 2(a)] is also
accounted by the theory [cf. (17)]. Because of the saturation
of both superadiabatic forces [inset of Fig. 2(a)], it is
necessary to analyze very small driving to obtain the correct
scaling. Also, at low average density ρ0 the viscous force is
proportional to ρ0 [see Fig. 2(b)], which according to (18)
implies η ∝ ρ20, as expected [8]. See the Supplemental
Material [25] for results for strong driving conditions and
for a theoretical prediction of the density profile.
Memory plays a vital role in nonequilibrium systems, as

we show in Fig. 2(c), by investigating the transient time
evolution after switching on the driving at t ¼ 0 [cf. (9)].
Both superadiabatic force contributions vanish in equilib-
rium (t ≤ 0) and saturate in steady state (t → ∞). At short
times after switching on the driving force, the viscous
(structural) force is linear (quadratic) in t, in full agreement
with the non-Markovian form of (15). See the
Supplemental Material [25] for an analysis of the scaling
of the amplitude of the forces with wave number k. Here we
have still taken ev ¼ ex as a (very good) approximation.
We conclude that the structural force is a primary

candidate for a universal mechanism that leads to non-
equilibrium structure formation. Examples of systems where
a force acts perpendicular to the flow include shear banding
[1–3], colloidal lane formation [4,5], and effective inter-
actions in active spinning particles [29,30]. The theory that
we present here operates in a self-contained way on the one-
body level of correlation functions and hence is different
from the approach of Refs. [7,11], where a dynamic closure
on the two-body level via modeling of Brownian “scatter-
ing” is postulated. Note that the treatment of Refs. [7,11]
relies on the density distribution as the fundamental variable;
in contrast, our theory predicts the behavior of the system
directly from the velocity field [cf. (16) and (17)].
We have focused here on the viscous and structural

contributions to the superadiabatic force in shear-type flow.
In compressional flow, where ∇ · v ≠ 0, further force con-
tributions can occur. Calculating the values for the transport
coefficients η and χ within the current theory is desirable,
based, e.g., on the two-body level of correlation functions
[31]. Furthermore, interesting research tasks for the future
include investigating the effects of inhomogeneous temper-
ature fields [32] and the possible emergence of time-periodic
states (“time crystals” [33]) in inertial dynamics [34].
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