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1.  Introduction

Since the pioneer work of Perrin [1], sedimentation has 
become a central tool for investigating the phase behaviour in 
colloidal systems. The height-dependent colloidal concentra-
tion profile provides a direct measurement of the equation of 
state for monocomponent systems [2, 3]. Sedimentation 
experiments are also used to extract information from the bulk 
phase behaviour in binary colloidal mixtures, see e.g. [4–6]. 
However, thermal and gravitational energies are of the same 
order of magnitude for typical colloidal systems. This results 
in additional gravity-induced phenomenology not present in 
bulk systems. Examples are denser particles floating on top of 

lighter colloids [7], a nematic layer sandwiched by isotropic 
layers in mixtures of platelets and spheres [8] and mixtures 
of thin and thick rods [9], and reentrant network formation in 
mixtures of patchy colloids [10]. It is also common to observe 
complex stacking sequences in sedimentation with three or 
more different layers, such as e.g. in mixtures of charged 
platelets and polymers [11], plate–plate binary systems [12], 
mixtures of spheres of different sizes [13], and colloidal rod-
plate mixtures [14].

The relation between bulk phase behaviour and sedi-
mentation-diffusion-equilibrium in mixtures is therefore 
intertwined with gravity-induced effects. From a theoretical 
viewpoint, a generalized Archimedes principle was form
ulated [7, 15] for the case where one of the components is 
very diluted. Sedimentation was also studied by analyzing 
the macroscopic osmotic equilibrium conditions [16, 17]. 
Recently, de las Heras and Schmidt have proposed a theory 
[18, 19] for obtaining the stacking diagram, i.e. the set of 
all possible stacking sequences under gravity, from the bulk 
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phase diagram of a given binary system. The theory is based 
on the concept of sedimentation paths. Each sedimentation 
path, which is a line in the plane of chemical potentials repre-
sentation of the bulk phase diagram, describes the state of the 
mixture under gravity, in sedimentation-diffusion-equilib-
rium. Using this theory the stacking diagrams of mixtures of 
spheres and platelets [18] and mixtures of platelets and non-
adsorbing polymers [19] were obtained. Also, very recently, 
van Roij and coworkers have obtained the stacking diagrams 
of mixtures of thin and thick colloidal rods [9]. Although in 
all these cases the bulk phase diagrams of the colloidal sys-
tems are relatively simple, the resulting stacking diagrams are 
extremely rich and show complex stacking sequences. These 
works are focused on the limit of very high (infinite) sample 
heights. This idealized limit is very relevant in experimental 
work since the height of the test tube is typically larger than 
the gravitational lengths of the colloids.

The interplay between micro confinement and colloidal 
sedimentation has been experimentally and theoretically 
investigated [20]. However, little attention has been paid 
to the influence of the total (macroscopic) sample height 
in colloidal sedimentation. A remarkable exception is the 
experimental work of Jamie et al [21], in which the proper-
ties of the gas-fluid interface of a polymer-colloid mixture 
are analyzed as a function of the overall height of the con-
tainer. By systematically changing the total sample height 
while keeping the polymer-colloid concentrations fixed, 
the interfacial properties were found to move towards the 
critical point. Theoretically, it has been shown that varying 
the sample height might lead to a change in the stacking 
sequence in mixtures of colloids and nonadsorbing poly-
mers [16, 19].

Here, we use the theory of [18, 19] to study sedimentation-
diffusion-equilibrium of colloidal mixtures with finite height 
samples. We first give a full account of the theory for the case 
of finite height samples. Next, we systematically investigate 
the role of sample height in the stacking diagrams of colloidal 
mixtures. To this end, we apply the theory to model binary 
systems. That is, systems with generic bulk phase diagrams 
typical of model Hamiltonian which we however do not  
explicitly specify. Finally, and as an application of current 
interest, we study sedimentation in patchy colloidal mixtures. 
Patchy colloids are functionalized colloids that interact via 
a directional and valence-limited potential [22, 23]. In our 
systems the two species of the mixture differ in either the 
number or in the types of patches. The bulk phase diagrams 
of these mixtures have been previously analysed [24, 25] 
using Wertheim’s theory [26]. Here, we obtain the stacking 
diagrams at different heights using only the bulk phase dia-
grams as input. The stacking diagrams are much richer than 
the corresponding bulk phase diagrams. Moreover, we show 
that the sample height is a crucial variable in sedimentation-
diffusion-equilibrium of colloidal mixtures. The stacking 
diagrams for the same mixture but for different sample 
heights differ not only quantitatively but also qualitatively. 
For example, some stacking sequences occur only in a given 
range of sample heights.

2. Theory

2.1. The sedimentation path

Consider a colloidal mixture under gravity in a sedimentation 
vessel of sample height h. The gravitational potential for each 
species i  =  1, 2 is migz, where mi is the buoyant mass of spe-
cies i, g is the acceleration due to gravity, and z is the ver-
tical coordinate (we set the origin of coordinates, z  =  0, at the 
bottom of the sample). Using a local density approximation 
[8, 18, 19, 27], we define a height-dependent local chemical 
potential for z h0 ⩽ ⩽  for each species

z m gz

z m gz
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where i
bµ  is the bulk chemical potential, i.e. the chemical 

potential in absence of gravity. The local density approximation 
assumes that for each z the state of the sample is analogous to 
a bulk system (no gravity) with chemical potentials given by 
(1). This constitutes a very good approximation provided that 
the correlation lengths are small compared to the gravitational 
lengths, k T m gi iB /ξ =  with kB the Boltzmann constant, and T 
the absolute temperature. Combining the expressions for the 
local chemical potentials, see (1), and eliminating the height 
variable z we find
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The finite size of the sample z h0 ⩽ ⩽  is translated into a range 
for the local chemical potentials

m gh
i0 1, 1, 2.i i

i

b

⩽ ⩽  
µ µ−

=� (4)

Equations (2) and (4) represent a line segment, which we refer 
to as the sedimentation path, in the plane of chemical poten-
tials. The sedimentation path describes how the local chemical 
potentials vary along the height coordinate in the vessel. Each 
point in the sedimentation path corresponds to the state of the 
sample at a given z.

The sedimentation path is directly related to the stacking 
sequence, i.e. the sequence of stacks of different phases that 
appear under gravity. If a path crosses a boundary between 
two phases in the phase diagram, e.g. a binodal, an interface 
appears in the vessel. The sedimentation path provides a direct 
link between the bulk phase diagram of the mixture and the 
stacking sequence. An example of a sedimentation path and its 
corresponding stacking sequence is shown in figure 1.

A sedimentation path is fully described by its (i) slope, (ii) 
location in the 1 2µ µ−  plane specified by a point on the path, 
(iii) direction and (iv) length. The slope is fixed by the ratio 
of the buoyant masses, see (3). The position is determined by 
the bulk chemical potentials in absence of gravity, and hence 
by the overall colloidal composition and concentration via a 
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change of variables using the equation of state of the mixture. 
The direction is given by the signs of the buoyant masses (note 
mi can be negative if the mass density of the solvent is higher 
than the mass density of the colloids). Finally, the length of 
the path is proportional to the height of the vessel since the 
difference in chemical potentials between the top (z  =  h) and 
the bottom of the sample (z  =  0) is

h m gh0 .i i i i( ) ( )µ µ µ∆ = − = −� (5)

2.2. The stacking diagram

We have shown how each sedimentation path is associated to 
a stacking sequence. The phase stacking diagram is the set of 
all possible stacking sequences for a given mixture.

Infinite height. For standard colloidal particles in typical 
sedimentation vessels the length of the sedimentation path is 
of several k TB  in the 1 2µ µ−  plane. That is, the path extends 
over a big region of the bulk phase diagram of the mixture. 
Hence, a very relevant idealization is to consider the limit of 
very high (infinite) sample heights. Within this limit [18, 19] 
a sedimentation path is a straight line of infinite length (not 
a line segment) in the plane of chemical potentials. Hence, a 
sedimentation path can be fully described by using only the slope 
of the path s, and the crossing point between the path and the 

2µ  axis a, see (3). The stacking diagram can then be represented 
in the s  −  a plane. There are three types of boundaries between 
different stacking sequences in the stacking diagram. Here we 
only describe each one briefly, see [18, 19] for a full account:

	 (i)	Sedimentation binodals. The set of all sedimentation 
paths tangent to a binodal in the bulk phase diagram is 
a boundary between two phases in the stacking diagram. 
The path labeled as (1) in figure  1 is an example. An 
infinitesimally small change in one or in both variables of 
the path, a and s, can change the stacking sequence.

	(ii)	Terminal lines. The set of all paths crossing an ending 
point of a binodal in the bulk phase diagram is a boundary 
in the stacking diagram that we call the terminal line. 
The sedimentation path (2) in figure 1 is an example. An 
infinitesimal change of a changes the stacking sequence. 
An ending point can be e.g. a critical point, triple point, 
critical end point, etc.

	(iii)	Asymptotic terminal lines. The third type of boundaries 
in the stacking diagram is formed by those paths that are 
parallel to the asymptotic behaviour of a binodal. See the 
path (3) in figure 1. In this case, an infinitesimal change of 
the slope s alters the stacking sequence. Both the binodal 
and the path do not terminate at finite chemical potentials. 
Hence, the sedimentation path and the binodal can cross 
due to an infinitesimal change of the slope of the path.

A binodal is not the only possible boundary between two 
regions present in the bulk phase diagram. For example, a 
percolating line dividing the bulk phase diagram into perco-
lated and nonpercolated states is another type of a boundary 
between phases. Any boundary present in the bulk phase dia-
gram generates boundaries in the stacking diagram (sedimen-
tation binodals, terminal lines and asymptotic terminal lines). 
For convenience we speak always of binodal lines but one 
should bear in mind that other lines also give rise to bounda-
ries in the stacking diagram. The patchy colloid mixtures 
studied below feature such percolation lines.

Finite height. In this paper we focus on the stacking 
diagrams for finite height samples. There exist several 
possibilities to represent the stacking diagram for finite heights. 
In an experimental work one typically varies the concentration 
and composition of the mixture, while keeping the solvent 
and the mass density of the colloids unchanged. The sample 
height is, in principle, easy to adjust3 and hence forms a useful 
control parameter. Under these circumstances the slope and 
the length of the path in the 1 2µ µ−  plane are fixed, see (3) 
and (5), and its position in the 1 2µ µ−  plane varies. A sensible 
choice of variables for the stacking diagram is the plane of 
average local chemical potentials along the path 1 2¯ ¯µ µ− . As 
the sedimentation paths are straight lines, the average local 
chemical potentials are just the local chemical potential 
evaluated at the middle of the sample z h 2i i¯ ( / )µ µ= = .

The stacking diagram for finite height samples in the 

1 2¯ ¯µ µ−  plane contains three possible types of boundaries 
between different stacking sequences. Two of them are 
sedimentation binodals originated from coexisting lines in the 
bulk phase diagrams and one boundary is due to the ending 

Figure 1.  Bulk phase diagram (schematic) of a binary mixture 
in the plane of chemical potentials 1 2µ µ− . Two phases A and 
B coexist at the binodal (solid black line). The binodal ends at a 
critical point (empty circle) and has a horizontal asymptote since 
the pure system of species 2 undergoes a phase transition. The solid 
red line represents the sedimentation path of the mixture in a vessel 
of height h under gravity. The arrow indicates the direction of the 
path from the bottom to the top of the sample. The corresponding 
stacking sequence is bottom A and top B, as shown in the sketch. 
The dashed red lines are selected sedimentation paths for infinite 
height: (1) a path tangent to the binodal, (2) a path that crosses 
an ending point of a binodal, (3) a path parallel to the asymptotic 
behaviour of the binodal.

3 Solvent evaporation might occur, changing the effective sample height and 
hence the concentration of colloids.
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points of the binodals. We describe each of them in detail in 
the following.

	 (i)	Sedimentation binodal type I (SBI). The set of all sedi-
mentation paths that either start or end at a binodal form 
a sedimentation binodal of type I. A path starts (ends) at a 
binodal if the bottom (top) of the sample is located at the 
binodal. The path labeled as (1) in figure 2 is an example. 
For each binodal in the bulk phase diagram there are two 
corresponding SBI in the stacking diagram. One SBI for 
those paths that end at the binodal and the other SBI for 
those paths that start at the binodal. Both SBI lines have 
the same shape as the bulk binodal. This type of boundary 
is not present in the case of infinite height because the 
paths do not have starting and ending points.

		 Let 2,C 1( )µ µ  be the parameterization of the chemical 
potential of species 2 at a bulk coexistence line, such as a 
binodal, as a function of 1µ . Then, the two corresponding 
sedimentation binodals of type I are given by

m g
h

m g
h
2

,

2
,

2 1 2,C 1 2

2 1 2,C 1 2

¯ ( ¯ ) ( )

¯ ( ¯ ) ( )

µ µ µ µ

µ µ µ µ

= +

= −

−

+
�

(6)

		 where

m g
h

2
.1 1 1¯µ µ= ±±� (7)

		 Here, 1µ
+ ( 1µ

−) is the local chemical potential of species 1 
at the bottom (top) of the sample.

	(ii)	Sedimentation binodal type II (SBII). The set of all paths 
tangent to a bulk binodal is also a boundary (sedimenta-
tion binodal type II) in the stacking diagram. See the path 
(2) in figure 2. This boundary is analogous to the sedi-
mentation binodals in the case of infinite height. The SBII 
boundaries are straight lines in the stacking diagram. A 
SBII line is present if and only if the slope of the path 
is the same as the slope of the binodal at some point(s). 
Each point of a binodal sharing the same slope as the path 
generates a SBII line.

		 Let ,1,t 2,t( )µ µ  be the chemical potentials of a point 
on a bulk binodal. Let its local slope be that of the 
sedimentation path. That is

s
d

d
.2,C

1
1,t

µ

µ
=

µ
� (8)

		 Then, the associated SBII line is given by

s.2 1 2,t 1 1,t¯ ( ¯ ) ( ¯ )µ µ µ µ µ= + −� (9)

		 The finite size of the path limits the range of 1µ̄  to

m g
h

2
.1 1,t 1¯ ⩽µ µ−� (10)

	(iii)	Terminal lines (TL). The terminal lines are, as in the infi-
nite height case, the set of all paths that cross an ending 
point of a binodal. See path (3) in figure  2. For each 
ending point in the bulk phase diagram there is one and 
only one TL in the stacking diagram. The TL is always a 
straight line.

		 Let ,1,e 2,e( )µ µ  be the chemical potentials of an ending 
point in bulk, such as a critical point, a triple point, etc. 
The corresponding terminal line is

s,2 1 2,e 1 1,e¯ ( ¯ ) ( ¯ )µ µ µ µ µ= + −� (11)

for

m g
h

2
.1 1,e 1¯ ⩽µ µ−� (12)

In the three cases (i)–(iii) any infinitesimal displacement of 
the path changes the stacking sequence (except for the special 
case in which the displacement is such that the path moves 
along the boundary of the stacking diagram). The asymptotic 
terminal lines that occur in the case of infinite sample height 
do not appear at finite height since the slope of the sedimenta-
tion path is fixed and the paths are of finite length.

The three boundaries SBI, SBII, and TL divide the stacking 
diagram in different regions. Each region corresponds to a dif-
ferent stacking sequence. In order to identify each sequence 
we first select one point inside of the desired region. Next we 
plot the corresponding path in the bulk phase diagram such 
that we can determine the sequence by inspecting the cross-
ings between the path and the binodals.

Once the stacking diagram has been calculated in the 1 2¯ ¯µ µ−  
plane, we can easily transform to any other set of variables 
provided that the equation  of state of the mixture is known. 

Figure 2.  Schematic bulk phase diagram of a binary mixture in the 
plane of chemical potentials 1 2µ µ− . Two phases A and B coexist 
at the binodal (solid black line). The binodal ends at a critical point 
(empty circle). The solid red lines are selected sedimentation paths 
(finite height). The arrow indicates the direction of the path from 
the bottom to the top of the sample. The coordinates of the middle 
point of the path are the average local chemical potentials ,1 2( ¯ ¯ )µ µ  as 
indicated in one of the paths. The top (bottom) path marked with (1) 
starts (ends) at the binodal. The path labeled as (2) is tangent to the 
binodal. The path (3) crosses the critical point.

J. Phys.: Condens. Matter 29 (2017) 064006
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In order to ease comparison to experimental work, a sensible 
choice of variables for the stacking diagram is the 1 2¯ ¯η η−  plane, 
where īη  is the average packing fraction of species i,

h
z z

1
d .i

h

i
0

¯ ( )∫η η=� (13)

Here, zi( )η  is the local packing fraction of species i at a distance 
z from the bottom of the sample. To obtain zi( )η  we first 
compute the local chemical potentials at z using equation (1), 
and then use the equation of state of the system ,i i 1 2( )η η µ µ= . 
The phase diagram in the 1 2¯ ¯η η−  plane is then obtained by 
transforming the coordinates of the boundaries in the stacking 
diagram from ,1 2( ¯ ¯ )µ µ  to ,1 2( ¯ ¯ )η η . Other representations of the 
stacking diagram such as for example average osmotic pres
sure versus average composition are also possible, following a 
similar transformation procedure.

3.  Results

We first apply our theory to obtain the stacking diagrams at finite 
height of different bulk model phase diagrams (section 3.1). Although 
the bulk phase diagrams do not correspond to real microscopic 

models, they are representative of the behaviour of typical col-
loidal mixtures. The model bulk phase diagrams provide relevant 
examples of possible topologies of the stacking diagrams. In sec-
tion 3.2 we apply the theory to model binary mixtures of patchy 
colloids for which we use Wertheim’s theory to obtain the bulk 
phase diagram. Finally, in section 3.3 we compare the stacking 
diagrams at finite and infinite sample heights.

3.1.  Model bulk phase diagrams

One of the simplest possible bulk phase diagrams of a binary 
mixture is schematically represented in figure 3(a). There is 
a single binodal at which two phases A and B coexist. The 
binodal ends at a critical point. The species 2 undergoes an 
A-B phase transition. Hence, the binodal has a horizontal 
asymptote and tends to the value of 2µ  at the transition (chosen 
as lim 0.8921→ µ =µ −∞ ). This phase diagram might be 
representative of e.g. a mixture of spherical colloids (species 
1) and anisotropic colloids undergoing an isotropic-nematic 
phase transition (species 2). A small degree of polydispersity 
in the spherical colloids could prevent a liquid-solid phase 
transition in the pure system of species 14.

Figure 3.  (a) Schematic bulk phase diagram of a binary mixture in the plane of chemical potentials 1 2µ µ− . Two phases A and B coexist at 
the binodal (solid black line). The binodal ends at a critical point (empty circle). The solid red lines are representative sedimentation paths 
(finite height) corresponding to samples with two different heights, h1 and h h2 1> , as indicated. The slope of the path is s  =  1 in both cases. 
The arrow indicates the direction of the path from the bottom to the top of the sample. The red circle on the path h2 is located at the center 
of the path. Its coordinates are the average local chemical potentials along the path. (b) Stacking diagrams for samples with heights h1 (left) 
and h2 (right). Sedimentation binodals of type I (SBI) are indicated by black solid lines and terminal lines (TL) by black dotted lines. Each 
region is coloured and labelled according to its stacking sequence (from bottom to top). The sedimentation path corresponding to the point 
highlighted with a red circle in panel (b) is represented in the bulk phase diagram (a). The lower panels (c) and (d) show the same diagrams 
for the case of sedimentation paths with slope s  =  −1. The sedimentation binodals of type II are indicated by black dashed lines. The inset 
on the left of panel (d) is a close view of a region of the stacking diagram.

4 This ignores phase coexistence phenomena in polydisperse systems.

J. Phys.: Condens. Matter 29 (2017) 064006
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The stacking diagram of the chosen model bulk phase 
diagram for the case of infinite height is shown in figure 5 of 
[19]. Here we focus on the case of finite height. In figure 3(b) we 
represent the stacking diagram ( 1 2¯ ¯µ µ−  plane) for two different 
heights h1 and h2 with h h2 1> . In both cases the slope of the 
paths are the same, s m m 12 1/= = , and both buoyant masses are 
positive such that both local chemical potentials decrease from 
the bottom to the top of the sample. We show representative 
sedimentation paths in figure  3(a). Each sedimentation path 
in the 1 2µ µ−  plane in the bulk diagram is a point in the 

2 1¯ ¯µ µ−  plane of the stacking diagram (the coordinates of the 
middle point of the path). The stacking diagrams contain two 
sedimentation binodals of type I (generated by paths starting 
and ending at the bulk binodal) and one terminal line (paths 
crossing the critical point). There are three possible stacking 
sequences, namely A, B, and AB. We label the sequences 
according to the order of different stacks from bottom to top.

Next, we study the same model bulk phase diagram but 
for sedimentation paths with a different slope, s  =  −1. See 
representative paths in figure 3(c). Here m1  >  0 and m2  <  0 
such that 1µ  ( 2µ ) decreases (increases) from the bottom to 
the top of the sample. The slope of the path is, in this case, 
compatible with the slope of the binodal in the sense that there 
is one point at the binodal whose derivative equals the slope 
of the path, see (8). Hence, the stacking diagram contains a 
sedimentation binodal of type II which is formed by the set of 
paths that are tangent to the binodal in bulk. The boundaries 
of the stacking diagrams (figure 3(d)) are: two SDI lines, one 
SDII line, and one TL. These boundaries split the stacking 
diagram into five regions. The possible stacking sequences are 
A, B, AB, ABA, and BA5. The ABA sequence appears when a 
path crosses the bulk binodal twice [8, 27].

This very simple example already shows the richness of the 
stacking diagram. It also suggests that the sample height plays 

a major role. The size of the area of the stacking diagrams 
occupied by each stacking sequence depends strongly on the 
height of the sample. For example, the AB region substanti
ally increases with h, see figure 3(b). Two samples of different 
height and different stacking sequences might have the same 
composition and concentration of colloids (we will see 
examples in the next section). The height of the sample might 
have an even stronger influence on the stacking diagram, as 
we will demonstrate in the following.

In figure 4(a) we show a further model bulk phase diagram. 
There are three different phases: A, B and C. Three binodals 
for A-B, A–C, and B-C coexistence meet at a triple point. A 
phase diagram like this might correspond to a mixture in which 
the species 1 represents spherical colloids and the species 2 
consists of e.g. elongated colloidal particles. The elongated 
particles can undergo isotropic-nematic and nematic-smectic 
phase transitions.

The stacking diagrams for this mixture are depicted in 
figure 4(b) for two different heights, h1 and h2, with h h1 2< . 
In both cases the slope of the path is s  =  1 and both buoyant 
masses are positive. The boundaries in the stacking diagram 
are: six SDI lines (two for each of the three binodals), one 
SDII line (the slope of the path matches the slope of the 
B-C binodal at one point), and one TL line (originating 
from the triple point). The stacking diagrams for heights 
h1 and h2 differ substantially from each other, see left and 
right panels of figure  4(b), respectively. We observe two 
main differences between the diagrams for short and long 
samples:

First, the sedimentation paths for the small system (h1) fit 
in the space between the A-B and B-C binodals of the bulk 
phase diagram, see an example in figure 4(a). Consequently 
the stacking sequence B occurs in the stacking diagram, 
figure 4(b) (left). In contrast, the stacking sequence B does not 
occur in the large samples (h2). The B sequence is replaced by 
an ABC state, figure 4(b) (right). The sedimentation paths in 
this case are long enough such that they do not fit in the region 

Figure 4.  (a) Schematic bulk phase diagram of a binary mixture in the plane of chemical potentials 1 2µ µ− . The solid black lines indicate 
binodals. Three phases A, B and C coexist at a triple point (triangle). The solid red lines are representative sedimentation paths of samples 
with two different finite heights, h1 and h2, as indicated. The slope of each path is s  =  1. The arrow indicates the direction of the path from 
the bottom to the top of the sample. (b) Stacking diagrams for samples with heights h1 (left) and h h2 1>  (right). The SBI lines are indicated 
by black solid lines. The SBII lines are represented as black dashed lines. The TL are indicated by black dotted lines. Each region is 
coloured and labelled according to its stacking sequence (from bottom to top). The inset on the left of panel (b) is a close view of a region 
of the stacking diagram.

5 Note that sequences with a single stack, such as A, are actually one 
phase-systems and not proper sequences made of different stacks.
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between the A-B and B-C binodals in bulk. Instead, the path 
must cross at least one of the binodals.

Second, the sequence CABC is generated by paths crossing 
the three binodals in bulk. This sequence is present only in the 
long samples, figure 4(b) (right). The paths corresponding to 
the short samples (h1) are not long enough to cross the three 
binodals, and hence the CABC sequence is absent.

These examples illustrate how the stacking diagrams for 
different heights might differ qualitatively. By changing the 
overall height of the sample some stacking sequences are 
replaced by others (e.g. the B sequence for h1 is replaced by 
ABC for h2) and one also observes the occurrence of new 
sequences, such as the CABC sequence for h2.

3.2.  Mixtures of patchy colloids

We next apply our theory to patchy colloidal binary mixtures. 
We study two cases in which the species differ either by the 
number or by the types of patches.

3.2.1.  Different number of patches.  We model the colloids by 
hard spheres of diameter σ with identical patches (spheres of 
size δ) on the surface, see figure  5(a). If two patches over-
lap the internal energy of the system decreases by ε. We use 
Wertheim’s first order perturbation theory [26] and a gener-
alization of the Flory-Stockmayer theory of polymerization 
[28, 29] to compute the bulk phase diagram of the mixture. 
We follow exactly the same implementation of the theory 
as in [24]. Theory and Monte Carlo simulations for the bulk 
phase behaviour are in semi-quantitative agreement with each 
other [30, 31].

The species 1 has two patches, and the species 2 has 
three patches. The colloids with three patches undergo a 
phase transition between two fluids with different densities. 
With only two patches present the particles of species 1 can 
form only chains. The absence of branching prevents phase 
separation and there is no fluid–fluid phase transition in the 
pure system of species 1. In the mixture the transition between 
high and low density fluids ends at a critical point. See the 
binodal in the bulk phase diagram of the mixture shown in 
figure 6(a) for scaled temperature k T 0.09B / =ε . In addition 

to the binodal, the phase diagram contains a percolation line 
that divides percolated and non-percolated states. The system 
is percolated if the probability that a patch is bonded, fb, is 
higher than the percolation threshold pT. The percolation line 
intersects the binodal close to the critical point on the low 
density side. The high density phase (G) is an equilibrium gel 
or network fluid which is always percolated. The low density 
phase does not percolate (N) except for a very narrow region 
close to the critical point (G’). We refer the reader to [24, 
30] for further details about the bulk phase behaviour of this 
mixture.

To proceed and to obtain the stacking diagrams we need 
to set the slope of the sedimentation paths and the height 
of the sample. We fix the gravitational lengths of the 
colloids to ξ = 5 mm1  and ξ = 2 mm2  (typical values for 
colloidal particles). Hence, the slope of the path is fixed to 
s 2.51 2/ξ ξ= = . The stacking diagrams in the 1 2¯ ¯µ µ−  plane 
for three different heights h  =  1 mm, 10 mm, and 25 mm are 
shown in figure 6(b). Each of them contains four SDI lines 
(two for the binodal and two for the percolation line) and 
two terminal lines (one for the critical point and one for the 
ending point of the percolation line). Six different stacking 
sequences are possible for this value of the slope: N, G, GN, 
G-N, G–G’, and G–G’N. We use a dash between two stacks 
in the stacking sequence, like in the G-N sequence, to indi-
cate that the sedimentation path crosses the binodal. The 
absence of a dash, e.g. in the GN sequence, indicates that the 
path crosses the percolation line.

Once the stacking diagrams in the plane of average chem-
ical potentials have been computed, we can transform the vari-
ables using the procedure described at the end of section 2. In 
figure 6(c) we show the bulk phase diagram in the plane of 
packing fractions. The bulk phase diagram can be interpreted 
as the stacking diagram in the limit of zero sample height for 
which the sedimentation path is just a point. In figure 6(d) we 
present the stacking diagrams for h  =  1 mm and h  =  10 mm in 
the plane of average packing fractions.

The number and types of stacking sequences remain the 
same for the sample heights investigated here. However, 
the region of the phase space occupied by each sequence 
significantly depends on the value of the sample height. We 
show a specific example in figure  7 in which we plot the 
density profiles of two samples with the same average packing 
fractions ( 0.0021̄η = , and 0.352η̄ = ), but different heights 
(h  =  25 mm and 10 mm). The corresponding state points are 
highlighted by green solid circles in the stacking diagrams of 
figure 6. Despite the average colloidal concentrations being 
the same, the stacking sequences differ: G-N for the sample 
with h  =  25 mm and G for the case h  =  10 mm. Other values 
of the sample height and the gravitational lengths will result 
in identical phenomenology provided that the ratios h i/ξ  with 
i  =  1, 2, are unchanged.

3.2.2.  Different types of patches.  As a concluding example 
we study a binary mixture of patchy colloids with different 
types of patches. The species 1 (2) possesses three patches 
of type A (B), see figure 5(b) for an illustration. When two 
patches of type α and β with A B, ,{ }α β =  overlap, the energy 

Figure 5.  Schematic of the patchy colloidal particles. All colloids 
are modelled as hard spheres of diameter σ with patches on the 
surface (spheres of diameter 0.12δ σ≈ ). We study two types of 
mixtures. (a) Binary mixtures of particles with identical patches. 
The species 1 has 2 patches and the species 2 has 3 patches. (b) 
Binary mixture of particles with three patches of type A (species 1) 
and of type B (species 2). If two patches overlap the internal energy 
of the system decreases in a quantity given by the type of patches 
involved.
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of the system decreases by αβε . The bulk phase diagram of 
this model has been studied theoretically [25] and by Monte 
Carlo simulations [31] for different values of the bonding 
energies αβε . The phenomenology that emerges is very rich 
as different types of gels can occur depending on the set 
of bonding energies. Here, we set BB=ε ε  (energy scale), 

0.80AA =ε ε , and 0.85AB=ε ε . We fix the scaled temperature, 
as in the previous case, to k T 0.09B / =ε .

The bulk phase diagrams in the planes of chemical 
potentials and of packing fractions are shown in figures 6(a) 
and (b), respectively. At the value of temperature considered 
only the species 2 (strongest bonds) undergoes a fluid–fluid 
phase transition. Hence, in the mixture there is only one 
binodal that ends at a critical point. In addition there are 
three percolation lines. One of these indicates whether the 
full mixture percolates, and the other two percolation lines 
indicate whether the individual species percolate. Although 
species 1 does not undergo a first order fluid–fluid phase 
transition at this temperature, it still undergoes a percolation 
transition. The percolation lines and the binodal divide 
the bulk phase diagram into five different regions. At low 
chemical potentials (and hence low densities) the system is 
non-percolated (N). The other four states are equilibrium 
percolated gels: (i) a mixed gel (M) in which the mixture 
percolates but none of the species percolates independently, 
(ii) a bicontinuous gel or bigel (B) in which the mixture and 
both species percolate, (iii) two gels (Gi, i  =  1, 2) in which 
the mixture and the species i percolate. See [25, 31] for 
further details about the bulk behaviour.

N

Figure 7.  Density profiles iρ  of species 1 (green solid line) and 
species 2 (orange dashed line), percolation threshold pT (dot-dashed 
blue line), and bonding probability fb (dotted black line) of a binary 
mixture of patchy particles with two (species 1) and three (species 
2) patches under gravity. The height of the container is h  =  25 mm 
(a) and 10 mm (b). The system is percolated if f pb T> . In both 
cases the average packing fractions of the colloids of each species 
are the same, 0.0021̄η = , and 0.352η̄ = . The stacking sequences 
are G-N (a) and G (b), schematically represented in the upper right 
corner of the figure. The insets in (a) and (b) are close views of the 

1ρ  profile. The red arrow in panel (a) indicates the position of the 
G-N interface.

Figure 6.  Bulk phase diagram of a binary mixture of patchy colloids with two (species 1) and three (species 2) identical patches in the 
plane of chemical potentials (a) and packing fractions (c). The temperature is k T 0.09B / =ε . The black solid line indicates the binodal. The 
dashed line is the percolation line of the mixture. The empty circle indicates the critical point. The black solid circle is the ending point 
of the percolation line. The inset in (a) is a close view of the region near the critical point. (b) and (d) show the stacking diagrams of the 
mixture under gravity in the plane of average chemical potentials (b) and average packing fractions (d) for three different sample heights, as 
indicated. A dash between two letters, like in the sequence G-N, indicates that the sedimentation path crosses the binodal. The absence of a 
dash, such as e.g. in GN, indicates that the path crosses the percolation line.
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Here, we study sedimentation-diffusion-equilibrium. As in 
the example above we chose the gravitational lengths to be 

51ξ =  mm and 22ξ =  mm, and study two different sample 
heights h  =  1 mm and 10 mm. The resulting stacking diagrams 
are extremely rich, see figures 8(c) and (d), with more than 
20 distinct stacking sequences. Again, the regions occupied 
for each stacking sequence depend on the sample height. In 
some cases the same stacking sequence occurs in a completely 
different range of average packing fractions when varying the 
sample height, see for example the sequence 11 (G2M) in 
figure 8(d). Even more important is the fact that the stacking 
diagrams for h  =  1 mm and h  =  10 mm are qualitatively 
different. There are several stacking sequences that are present 
only in one of the selected sample heights. For example, the 
sequence MG1 (number 10 in figure  8) is only present in 

samples with h  =  1 mm, and the sequence G2MG1M (number 
25) occurs only for the case h  =  10 mm.

3.3.  Infinite versus finite height stacking diagrams

We conclude the section  with several comments regarding 
the connection between the stacking diagrams for infinite 
and finite samples. The main effect is the occurrence of 
new sequences in the case of finite height samples. The new 
sequences are formed by the removal of one or more stacks 
of the sequences for h →∞. In general, a sequence observed 
at finite height might be a truncated sequence of the infinite 
system. This observation has strong implications for the 
correct interpretation of observed stacking sequences in finite 
height samples.

Figure 8.  Bulk phase diagram of a binary mixture of patchy colloids with three patches of type A (species 1) and three patches of type B 
(species 2) in the plane of chemical potentials (a) and packing fractions (b). The black solid line indicates the binodal. The dashed lines 
are percolation lines of the mixture (black), of the species 1 (red), and of the species 2 (blue). The empty circle indicates the critical point. 
The black solid circles are the ending points of the percolation lines. Shown are the stacking diagrams of the mixture under gravity in the 
plane of average chemical potentials (c) and average packing fractions (d) for two different sample heights, as indicated. The legend shows 
the occurring stacking sequences. A dash between two letters, like in the sequence 3, G2  −  N indicates that the sedimentation path crosses 
the binodal. The absence of a dash, such as e.g. in 13 (G1M) indicates that the path crosses a percolation line. The sequences marked with 
a circle in the legend are present at both sample heights. The sequences marked with a solid (dashed) square occur only for samples with 
h  =  1 mm (h  =  10 mm).
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In figure 9 we show the stacking diagram (infinite height) 
of the mixture of patchy colloids with two and three patches 
analyzed in section 3.2.1. The stacking diagram is represented 
in the s  −  a plane, see (3). The diagram has been computed 
for m1  >  0. Hence positive (negative) values of the slope 
s m m2 1/=  correspond to positive (negative) values of m2. 
There exists an analogous diagram for m1  <  0 in which the 
only difference is that the stacking sequences have the reverse 
order. There are two sedimentation binodals (one for the 
binodal and one for the percolation line), two terminal lines 
(critical point of the binodal and ending point of the perco-
lation line), and two asymptotic terminal lines (asymptotic 
behaviour of the binodal and the percolation lines).

We have shown previously the diagrams at finite height for 
the slope s  =  2.5, see figure 6. For this value of s only three 
sequences are possible at infinite height, see figure  9: GN, 
G–G’N, and G-N. The finite height diagram is richer with 
up to six different sequences. These are the same three as 
for h →∞ and three new truncated sequences of the infinite 
case (G, N, and G–G’). As expected, by increasing the height 
of the sample, the regions occupied by the new truncated 
sequences in the stacking diagrams shrink (see figure 6(d)). 
In this particular example, for h  =  25 mm, the stacking dia-
gram is already dominated by the stacking sequences of the 
infinite height case.

The infinite height stacking diagram provides the set of 
possible sequences for different values of s. Here, we have 
only analysed the value s  =  2.5 of the slope for finite height 
samples. The infinite height stacking diagram shows that for 
other values of s further complex phenomenology occurs. For 
example, for negative values of the slope, i.e. m2  <  0, it is 
possible to stabilize the sequence NGN-G which constitutes a 
reentrant percolation phenomenon. This sequence also occurs 
in two-dimensional binary mixtures of patchy colloids [10].

Experimentally one can change the slope of the path via the 
synthesis of colloids with cores of different materials [32, 33] 
or changing the mass density of the solvent. Hence, the full 
range of stacking sequences of a given colloidal mixture is, in 
principle, experimentally accessible.

4.  Discussion and conclusions

Our theory is based on a local density approximation which 
assumes that for each z the state of the sample can be approx-
imated by a bulk state. Non-local effects might modify the 
stacking diagrams. In particular, the theory neglects the sur-
face tension of the interfaces between stacks in the stacking 
sequence. If one of the stacks is very narrow the surface ten-
sion of the upper and lower interfaces might be higher than 
the gain in free energy due to the formation of the stack, as 
observed in colloid-polymer model mixtures [27]. Under 
such circumstances, the final equilibrium stacking sequence 
might be different than that predicted by our local theory. This 
condition is analogue of capillary condensation/evaporation. 
Surface effects such as e.g. the occurrence of wetting and 
layering near the walls of the vessel might also modify the 
stacking diagrams.

Our theory can be easily extended to multicomponent sys-
tems since the sedimentation paths remain lines in the phase 
space of chemical potentials. Also, the theory is directly appli-
cable to molecular systems. There, the gravitational lengths are 
orders of magnitude higher than in colloidal systems. Hence, 
to observe similar phenomenology one needs containers of 
considerable size, such as for example geological deposits.

We have obtained the stacking diagrams at constant sample 
height and fixed ratio of the buoyant masses. Other choices, 
such as for example keeping the colloidal concentrations fixed 
and varying the sample height, are also possible. A stacking 
diagram in which one of the variables is the height might 
be relevant to study the effects of slow solvent evaporation, 
which is a process that changes the total volume but keeps the 
particle number fixed.

We have shown that two samples with the same colloidal 
concentrations but placed in vessels of different heights might 
have different stacking sequences. We have also shown that 
the stacking diagrams might be qualitatively different for dif-
ferent heights. Therefore, the sample height plays a major role 
in sedimentation-diffusion-equilibrium experiments. This role 
is as important as for example the average colloidal concentra-
tions. We conclude that the sample height should be carefully 
measured and specified in any sedimentation experiment.

Figure 9.  Stacking diagram (infinite height) in the s  −  a plane 
of a binary mixture of patchy colloids with two and three patches 
at k T 0.09B / =ε . The inset is a close view of a small region. Each 
coloured region is a different stacking sequence labelled from 
bottom to top of the sample. A dash in the label indicates the 
sedimentation path crosses the binodal. No dash indicates the path 
crosses a percolation line. The stacking diagram corresponds to 
the case m1  >  0. The stacking diagram for the case m1  <  0 can be 
obtained by just reversing the order of the stacks. The green arrows 
signal the slope s  =  2.5 for which we have obtained the stacking 
diagrams at finite height, see figure 6. Sedimentation binodals are 
represented by solid lines. Terminal lines are shown as dashed lines. 
Asymptotic terminal lines are indicated by dotted lines.
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We have focused on sedimentation-diffusion-equilibrium 
in colloidal mixtures. Future studies could consider the 
dynamics of sedimentation using dynamic density functional 
theory [34, 35] and power functional theory [36].
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