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We investigate percolation in binary and ternary mixtures of patchy colloidal particles theoretically
and using Monte Carlo simulations. Each particle has three identical patches, with distinct species
having different types of patch. Theoretically we assume tree-like clusters and calculate the bonding
probabilities using Wertheim’s first-order perturbation theory for association. For ternary mixtures,
we find up to eight fundamentally different percolated states. The states differ in terms of the species
and pairs of species that have percolated. The strongest gel is a trigel or tricontinuous gel, in which
each of the three species has percolated. The weakest gel is a mixed gel in which all of the particles
have percolated, but none of the species percolates by itself. The competition between entropy of mix-
ing and internal energy of bonding determines the stability of each state. Theoretical and simulation
results are in very good agreement. The only significant difference is the temperature at the percola-
tion threshold, which is overestimated by the theory due to the absence of correlations between bonds
in the theoretical description. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960808]

I. INTRODUCTION

The interaction between patchy colloids is valence
limited, specific, and directional due to the presence of patches
or interaction sites on the surface of the colloids. Patchy
colloids are excellent candidates to design new materials with
properties on-demand by controlling the microscopic details
of the interparticle interaction. The distribution, number, and
types of patches can be tuned1–4 such that patchy colloids self-
assemble into new structures that are not found in isotropically
interacting colloids. Examples are the directed self-assembly
of patchy colloids into a kagome lattice,5 polyhedra,6 and
micelles.7

In addition to complex regular structures, patchy colloids
also form stable gels. The number of patches is a key ingredient
determining the location of the liquid-gas critical point.8 In
systems of patchy colloids with low valence, the liquid-gas
phase separation region shrinks drastically, and it is possible to
find stable liquids at very low densities and temperatures.9,10

These, equilibrium, low density states are gels in which the
patchy colloids assemble into amorphous percolated networks.

Mixtures of patchy particles provide an additional handle
for tuning the morphology of the gel. In Ref. 11, we predicted
theoretically the existence of new gel structures in binary
mixtures with intriguing percolation properties, such as a
bicontinuous gel (BG or bigel). Here, two interpenetrating
networks, each made of one type of colloids, span the system
volume. Other gel structures are possible, such as mixed gels
(MGs) where the mixture is percolated but neither species
percolates independently.11

Bigel-like percolated states are not specific of patchy
colloidal systems. Bicontinuous structures have been reported
in, e.g., polymer blends,12,13 mixtures of dipolar colloidal

a)Electronic mail: delasheras.daniel@gmail.com

particles,14,15 fumed silica-based systems,16 mixtures of an
aqueous gel and an oleogel,17,18 DNA coated colloids,19,20 and
mixtures of proteins.21

In this work, we investigate the structure of equilibrium
gels in binary and ternary mixtures of patchy colloids. We test
the validity of our extension of the Flory-Stockmayer theory of
polymerization22,23 to multicomponent systems with different
types of patches10 by comparing theoretical with Monte
Carlo simulation results. The latter agree semi-quantitatively
with the theoretical predictions and corroborate our previous
findings11 of bigels and mixed gels in binary systems of
patchy colloids. Additionally, we extend the analysis of
the percolation of patchy colloids to ternary mixtures both
theoretically and using computer simulations. We find eight
fundamentally different types of percolated states that we
classify according to their strength against breaking bonds.
The strongest gel is a trigel or tricontinuous gel in which there
are three interpenetrated networks, each one made of one type
of colloids. The rich phenomenology of the ternary system can
be understood as a competition between the entropy of mixing
and the internal energy of bonding. At high temperature, the
entropy of mixing, which favors interspecies bonds, dominates
and promotes the formation of different types of mixed gels.
At low temperatures, however, the internal energy of bonding
is the most important contribution to the free energy. Here,
we observe the occurrence of strong gels such as bigels and
trigels provided that the intraspecies bonds are stronger than
the interspecies ones. The stability of each type of gel can be
controlled by changing the temperature and composition of
the mixture.

II. MODEL AND METHODS

The model patchy colloidal particles, see Fig. 1, consist of
a hard core (hard sphere of diameter σ) with three interaction

0021-9606/2016/145(7)/074903/10/$30.00 145, 074903-1 Published by AIP Publishing.
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FIG. 1. Illustration of the model. Patchy colloids are modelled as hard
spheres of diameter σ with three bonding sites of size δ on the surface. The
only difference between species is the type of their bonding sites: type A for
species 1, type B for species 2, and type C for species 3 (not shown). A bond
between patches of type α and β decreases the energy of the system by a
quantity ϵαβ.

sites or patches on the surface. The patches are spheres of size
δ centered at the surface of the hard core, uniformly distributed
along the equator of the particles, i.e., the angle between two

patches is 120◦. We set δ = 0.5(


5 − 2
√

3 − 1)σ ≈ 0.12σ,
which is the largest value that guarantees single bonding of
each patch. In addition, the geometry of the particles ensures
that two colloids cannot form more than one bond between
them. The interaction between patches φαβ is a square well
potential, i.e., if two patches of types α and β overlap, the
energy of the system decreases by a quantity ϵαβ,

φαβ(1,2) =



−ϵαβ, patches overlap,
0, patches do not overlap,

(1)

where 1,2 indicates the position and orientations of colloids 1
and 2.

We consider binary and ternary mixtures. The only
difference between the species is the type of their patches. In
the case of binary mixtures, the particles of species 1 (2) have
patches of type A (B). For ternary mixtures, we add a third
species with patches of type C.

A. Theory

We use a generalization of the Flory-Stockmayer theory
of polymerization22,23 to study the percolation transition.
The theory neglects bond correlations and therefore assumes
that all clusters are tree-like. For details of the theory for
multicomponent systems with different types of patches, we
refer the reader to Refs. 10 and 11. Here, we describe the
theory for our patchy particle model: each particle has three
identical patches, and there are three types of particles. The
binary system may be obtained as a particular case.

A schematic tree-like cluster is shown in Fig. 2. Let ni+1,α
be the number of patches of type α that are bonded at level
i + 1 of the tree-like cluster, see Fig. 2. ni+1,α is related to the
number of bonds that are bonded at the previous level i via

ni+1,A = ni,A2pAA + ni,B2pBA + ni,C2pCA,

ni+1,B = ni,A2pAB + ni,B2pBB + ni,C2pCB,

ni+1,C = ni,A2pAC + ni,B2pBC + ni,C2pCC,

(2)

FIG. 2. Schematic tree-like cluster in a ternary mixture. Each particle of
species 1 (red), 2 (blue), and 3 (yellow) has three patches of types A, B, and
C, respectively. pαβ is the probability of bonding a site α to a site β, with
α, β = {A,B,C}.

where pαβ is the probability of bonding a site α to a site
β. Note that, in general, pαβ , pβα since pαβ is proportional
to the number of available patches of type β and hence to
the number of particles with β patches, as we will see. The
factor of two in all the terms of the above equation reflects the
fact that one patch is bonded at level i by construction, and
therefore, only two patches are available to form bonds at the
next level i + 1. We can rewrite Eq. (2) in matrix form

ni+1 = T̃ni = T̃in0, (3)

where the components of the vector ni are ni,α, and the
percolation matrix T̃ is

T̃ = 2
*...
,

pAA pBA pCA

pAB pBB pCB

pAC pBC pCC

+///
-

. (4)

The system percolates if the number of bonds diverges in
the limit i → ∞, or equivalently if |λ | > 1 with λ the largest
eigenvalue of the percolation matrix, see Ref. 24 for more
details. In order to establish if subsets of the whole system are
also percolated, we have to consider a percolation matrix that
includes only the desired bonds. For example, the pair formed
by species 1 (patches of type A) and species 2 (patches
of type B) has percolated if the largest eigenvalue of the
matrix,

T̃′ = 2 *
,

pAA pBA

pAB pBB

+
-

(5)

is larger than one. The same procedure applied to a single
species leads to the known percolation threshold for tree-like
clusters of identical particles with only one type of patch:
pαα ≥ 0.5 = 1/( f − 1), with f the number of patches.

We obtain the probabilities pαβ from Wertheim’s first
order perturbation theory,25 which also neglects correlations
between bonds. The probability of bonding for a site α is

πα = 1 − Xα =


γ=A,B,C

pαγ, (6)

where Xα is the probability that a site α is not bonded. The
probabilities Xα are obtained from Wertheim’s theory. For our
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model, we find (see Ref. 11 for details)

Xα =


1 + 3η

3
i=1

x(i)Xβ∆αβ



−1

, (7)

where x(i) is the composition of species i, the subscript β
denotes the type of patches of species i (i.e., β = A if i = 1,
β = B if i = 2, and β = C if i = 3), η is the total packing
fraction of the system, and

∆αβ = ∆βα =
1
vs


gHS(r)[exp(−φαβ(1,2)/kBT) − 1]d(12).

(8)

Here, vs is the volume of the hard-core of the patchy
colloids, kB is the Boltzmann constant, and gHS(r) is the
radial distribution function for hard-spheres at a distance r .
The integral is calculated over all possible orientations and
separations of the colloids. Finally, we approximate gHS by its
contact value A0(η) (the patches are very small compared to
the size of the colloids). Hence,

∆αβ ≈
vb

vs
A0(η)[exp(ϵαβ/kBT) − 1], (9)

with

A0(η) = 1 − η/2
(1 − η)3 , (10)

and vb is the bonding volume, i.e., the volume in which
two colloids can form a bond averaged over all possible
orientations of the colloids. For our model of the patches,26

vb ≈ 3.32 · 10−4σ3.
Analyzing term-by-term Eqs. (6) and (7), we obtain

pαβ = x(i)3XαXβη∆αβ, (11)

which has an intuitive explanation. The probability of bonding
a site α to a site β, pαβ, is proportional to (i) the density of
available patches of type β which is 3x(i)Xβη/vs and (ii) the
probability that a patch α is available (not bonded) which is
Xα. The parameter ∆αβ controls the strength of the bond.

We have also obtained the probabilities directly from
Monte Carlo simulations and used them to compute the
percolation matrix. We compare both methods in Sec. III.

B. Simulation

We use Monte Carlo simulations in the canonical
ensemble, that is, we fix the total number of particles of each
species Ni, the temperature T , and the system volume V .
The simulation box is a cube with periodic boundary
conditions. The total number of particles in the simulation
box is N = 300 and the packing fraction η = 0.30. We have
also computed selected cases with N = 600 (i.e., doubling the
number of particles) and the same packing fraction and found
no significant differences. Hence, we expect finite size effects
to be small although simulations of much larger systems are
required to study finite size effects in a rigorous way.

In each simulation, we collect data from 107 Monte
Carlo steps (MCSs). Each MCS is an attempt to move and
rotate all particles in the system. In addition to translations
and rotations of the particles, we introduced a particle swap

move.27 The swap move randomly selects two particles and
interchanges their coordinates (spatial and orientational). The
swap move is accepted according to the standard Metropolis
criterion and satisfies detailed balance. We perform 0.1N
swap attempts after every MCS. The particle swap is very
useful to prevent trapping of the particles in local minima of
the energy landscape, especially at low temperatures. Before
collecting the data, we equilibrate the system by running MCS
until the energy fluctuates around a minimum value. Typically
∼106–107 MCSs are used for equilibration, depending on the
temperature.

For each composition, we start by running a simulation
at high temperature. Next we decrease T using the last
configuration of the previous simulation as the initial state.
We repeat this process for several Ts. In order to check that
we have reached the equilibrium states, we carried out the
inverse process for selected cases. That is, we started at low T
and increased the temperature. We have found the same states
both by increasing and decreasing T .

The main output of the simulation is the cluster size
distribution,

s(n) = Nc(n)/N, (12)

where Nc(n) is the number of clusters of size n. We compute
s(n) for the whole mixture, for each species s(i)(n) = N (i)

c /Ni,
and in the case of ternary mixtures for pairs of species
s(i+ j)(n). Using the cluster size distribution, we can compute
the probability of finding a particle in a cluster of size n,

Pn = ns(n), (13)

and the moments of s(n). We use the second moment of the
cluster size distribution

Nw =
1
N


n

n2s(n), (14)

to characterize the percolation transition. We set the
percolation threshold at 0.5, i.e., we consider the whole
system has percolated if Nw > 0.5. In order to characterize
the type of percolated state, we also analyze the second
moments of the cluster size distributions of single species and
pairs of species. For example, the species i has percolated if
N (i)

w =
1
Ni


n n2s(i)(n) > 0.5.

III. RESULTS

A. Binary mixtures

We start by describing the results for a binary mixture,
a system that we have previously studied using Wertheim’s
theory.11 All possible gels are listed in Fig. 3. We order
the gels according to their relative strength against breaking
bonds. The weakest gel is a mixed gel (MG). In a MG,
the mixture has percolated, but neither species 1 nor species
2 have percolated. The removal of one of the species will
break the connectivity of the system. Next we have a standard
gel. Here, one species percolates, and as a consequence the
mixture also percolates (in the mixture, we add new bonds to
a system that has percolated). The percolation of the mixture
is driven (induced) by the percolation of one of the species.
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FIG. 3. Types of gels of a binary mixture of patchy particles. The number
between brackets after the name of the gel indicates its strength against
breaking bonds (the higher this number the stronger the gel).

A standard gel is stronger than a mixed gel in the sense that
we can remove one species, the one that has not percolated,
and the system remains in a percolated state. The strongest
gel is a bicontinuous gel (BG), where both species percolate
independently. We can remove one species, either 1 or 2, and
the other species remains in a percolated state.

The relative stability of the different gels depends on
many factors, such as temperature, composition, packing

fraction, and ratio between the different bonding energies.
In Fig. 4 we show an example of a mixed and a bicontinuous
gel. Both mixtures are symmetric (ϵ AA = ϵBB = 1), and the
packing fraction (η = 0.3) and composition (x(i) = 0.5) are
also the same. A mixed gel (see a snapshot in Fig. 4(a1))
can be easily stabilized by making the interspecies bonds
stronger than the intraspecies bonds. In this way both the
entropy of mixing and the internal energy of bonding favour
the formation of interspecies bonds, which are dominant in
a mixed gel (see Fig. 4(a2)). The probabilities of finding a
particle in a cluster of n identical particles P(i)

n (Fig. 4(a3))
show that only small clusters of identical particles are present,
whereas the probability of finding a particle in a cluster
of n particles (independently of the particle type) clearly
indicates that the mixture has percolated. If interspecies
bonds are weaker than intraspecies bonds, i.e., ϵ AB < ϵαα
with α = A,B, then the energy of bonding may overcome the
entropy of mixing. In this case, a bicontinuous gel appears (see
a snapshot in Fig. 4(b1)). Here, intraspecies bonds dominate
(see Fig. 4(b2)), and the cluster size distribution indicates that
both species independently and the mixture have percolated
(see Fig. 4(b3)).

The ratio between inter- and intra-species bonding
energies plays a major role in determining the state of the

FIG. 4. Simulation results for a mixed gel (upper panels) at η = 0.3, x = 0.5, and kBT /ϵAA= 0.10. The bonding energies are ϵBB = ϵAA and ϵAB = 1.05ϵAA.
(a1) Typical simulation snapshot. (a2) Graphical representation of the bonds; each line connects the center of mass of two particles bonded through AA bonds
(left most), BB bonds (second left), AB bonds (second right), and through any type of bonds (right most). (a3) Probability of finding a particle in a cluster of size
n, Pn = ns(n), for particles of species 1 (left), 2 (middle), and for the whole mixture (right) as a function of the cluster size (normalized with the corresponding
number of particles). The bottom panels depict similar results for a bicontinuous gel at η = 0.30, x = 0.5, kBT /ϵAA= 0.08 and bonding energies ϵBB = ϵAA,
ϵAB = 0.90ϵAA.
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FIG. 5. Second moment of the cluster size distribution for each species N
(i)
w

and for the mixture Nw as a function of the scaled temperature kBT /ϵAA.
Symmetric mixture (ϵAA= ϵBB) with ϵAB = 1.05ϵAA, composition x = 0.2,
and packing fraction η = 0.30.

sample but it is not the only relevant variable. Temperature,
packing fraction, and composition are also important. We
illustrate this in Fig. 5, where the second moment of the
cluster size distributions as a function of the temperature
is plotted for a symmetric mixture with ϵAB = 1.05ϵAA and
x = N1/N = 0.2. At high temperatures, there are only a few
bonds and the system has not percolated. Percolation occurs
at kBTp/ϵAA ≈ 0.13. The system is always percolated below Tp
but the type of percolation changes. In a range of temperatures
below Tp, there is a mixed gel; only the two species together
percolate. However, at low temperatures, the state changes to
a gel of species 2. That is, the particles of species 2, which are
the majority, form a percolated network. The whole mixture
also percolates as addition of another species only adds new
bonds to the network.

The full percolation behaviour is summarized in the
composition-temperature percolation diagrams depicted in
Fig. 6. The percolation diagrams have been obtained via Monte
Carlo simulations analyzing the cluster size distribution (left)
and theoretically, assuming that the network is a tree-like
cluster and using the bonding probabilities measured in the
simulations (symbols) and calculated using Wertheim’s theory
(lines). We first describe the global common features and then
compare the two approaches.

1. Symmetric mixture with ϵAB > ϵAA

In Fig. 6(a) we show the results for a symmetric mixture
with ϵBB = ϵ AA and ϵ AB = 1.05ϵ AA. Three percolated states
are possible below the percolation threshold: two standard
gels and a mixed gel. The mixed gel is stable in a wide range
of compositions, and it is the first type of gel stabilized upon
cooling the system. This is the expected behaviour as the whole
mixture will always percolate before the individual species
percolate. The temperature at the percolation threshold has
a maximum for an equimolar mixture, x = 0.5, which is the
composition where the number of possible interspecies bonds,
with the highest bonding energy, is largest. At compositions
x . 0.3 (x & 0.7), we also find a gel of species 2 (1) at
sufficiently low temperature. Intraspecies bonds stabilize a
standard gel, and they increase as the composition approaches

FIG. 6. Percolation diagrams in the plane of composition x and scaled
temperature kBT /ϵAA for different bonding energies. x is the composition of
species 1. (a) ϵBB = ϵAA, ϵAB = 1.05ϵAA, (b) ϵBB = ϵAA, ϵAB = 0.95ϵAA,
and (c) ϵBB = 0.8ϵAA, ϵAB = 0.85ϵAA. Left column: results from the cluster
size distribution obtained using Monte Carlo simulations. Right column:
results from the analysis of the percolation matrix with probabilities extracted
from the Monte Carlo data (symbols) and computed using Wertheim’s theory
(lines). The mixture percolates at temperatures below the green line. Species
1 (2) has percolated if T is lower than the red (blue) line.

that of a single component system. Therefore, the temperature
where the standard gel is stabilized increases as we approach
the limit of pure systems x → 0 and x → 1. In other words, the
range in compositions where the mixed gel is stable decreases
with the temperature (in the range of temperatures analyzed
here).

2. Symmetric mixture with ϵAB < ϵAA

If the intraspecies bonds have the highest energy, there is
a competition between the entropy of mixing (which favours a
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mixed gel) and the internal energy of bonding (which favours
a bicontinuous gel). An example is shown in Fig. 6(b). At low
temperatures, the internal energy dominates and we observe
a bigel (BG) in a range of compositions around x = 0.5. The
lower the temperature the wider the composition range where
a BG is stable. At high temperatures, the entropy of mixing
overcomes the internal energy of bonding and a mixed gel
is stabilized. By contrast to the case with ϵ AB > ϵ AA, the
percolation temperature of the mixture exhibits a minimum at
the equimolar composition x = 0.5 rather than a maximum.
This is simply because the number of interspecies bonds is
maximal at x = 0.5, which are now the bonds with the lowest
energy, and thus, a lower temperature is required to stabilize
the bonds. Standard gels are also present in this mixture near
the composition of single component systems.

3. Asymmetric mixture

The diagrams discussed above are not present only in
the very special case of symmetric mixtures. An example is
shown in Fig. 6(c) where we consider an asymmetric mixture
with bonding energies ϵBB = 0.80ϵ AA and ϵ AB = 0.85ϵ AA.
The diagram is now asymmetric with respect to the equimolar
composition. Gel 1 dominates over a gel of species 2 since the
AA bonds are stronger than BB bonds. Although ϵ AB > ϵBB,
there is a bigel at low temperatures. The reason is that
the bonding energies satisfy ϵ AA + ϵBB < 2ϵ AB, i.e., it is
energetically unfavorable to form two AB bonds rather than
one AA and one BB. Therefore a bicontinuous gel should be
stable at sufficiently low temperature.

We next compare the percolation diagrams obtained
directly using the cluster size distribution (left column of
Fig. 6) and using the percolation matrix and the bonding
probabilities (right column of Fig. 6). The derivation of the
percolation matrix neglects the correlation between bonds and,
in particular, neglects closed loops. The clusters are tree-like
and their size is generally larger than that obtained from the
simulations, where bond correlations and closed loops are
present. Consequently, the threshold temperatures predicted
by the percolation matrix are higher than those obtained
from the simulations. This is, however, the only significant
difference. In all cases, the results are qualitatively the same.
We note that the bonding probabilities were obtained in two
different ways: (i) theoretically using Wertheim’s theory (solid
lines in Fig. 6) and (ii) directly from the simulations (symbols
in Fig. 6) by measuring the number of bonds of each type. The
resulting percolation diagrams are in perfect agreement. We
think closed loops are the most important missing ingredient
in our theoretical description. Nevertheless the absence of
closed loops is only one manifestation of neglecting the
correlations between bonds, and hence, other effects might
also contribute to the observed differences in the percolation
temperature.

We emphasize that we have analyzed the percolation
diagram only. Some of the states considered above may be
metastable against phase separation. For example, for the
mixture with ϵ AB < ϵ AA, we observed signs of demixing
at very low temperatures. We will return to this point in
Sec. IV.

B. Ternary mixtures

In this section, we consider ternary mixtures by adding
a third component (species 3) with interaction sites of type
C. The addition of a new species increases significantly the
number of percolated states. In Fig. 7 we depict all gels
labelled according to their strength against breaking bonds.

1. Mixed gels

The weakest type of percolated state is again a mixed
gel. In a ternary mixture, there are four different mixed gels
MG(k) with k = 0,1,2,3 indicating the strength (the lower the
index the weaker the gel). In mixed gels the single species
do not percolate. The difference between these gels relates to
different percolating states of pairs of species. The weakest
mixed gel is MG(0) where only the ternary mixture percolates.
Any subset of species, e.g., a mixture of species 1 and 2, does
not percolate. Next, we find gels MG(1) where there is one and
only one pair of species that percolates (e.g., species 1 and 2,
which in the following we denote by {1 + 2}), and thus, the
ternary mixture also percolates. There are three MG(1) gels
related to the pair of species that percolates: {1 + 2}, {1 + 3},
and {2 + 3}. The bonds of the species that is not involved
in percolation may be removed without breaking the global
connectivity of the system.

FIG. 7. Gels of a ternary mixture of patchy particles. The number between
brackets indicates the strength of the gel (the higher the number the stronger
the gel).
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Then we find MG(2) gels where two pairs of species
percolate. Again, there are three different gels (see Fig. 7).
We can remove only one species without breaking the global
connectivity, as in MG(1), but now we have two choices. For
example, if the pairs {1 + 2} and {1 + 3} are percolated, we
can break the bonds of either species 2 or 3 without affecting
the global connectivity.

The strongest mixed gel is MG(3) where any pair of
species has percolated. As in the previous cases we can break
the bonds of only one species within the percolated state, but
we can choose any of the three species.

2. Standard gels

Here, one and only one of the species has percolated. Any
pair of species where one component is the percolated species
is also percolated, and the ternary mixture has percolated as
well. The pair of species that does not include the percolated
component has not percolated. In a standard gel we can break
the bonds of two species (the nonpercolated components)
without affecting the connectivity of the remaining particles.

3. Standard plus mixed gels

In this case, the ith species (i = 1,2 or 3) has percolated
and the pair of species { j + k}with j, k , i has also percolated.
As for a standard gel the connectivity is not lost if we break the
bonds of species j and k. In addition, we have the possibility
of breaking the bonds of species i.

4. Bicontinuous gels

As for binary mixtures bicontinuous gels may also occur.
Two species i and j percolate and any pair of species also
percolates. Global connectivity is not affected by breaking the
bonds of two species provided that one is species k , i, j.

5. Trigel

The trigel is the strongest gel. The three species percolate
and all pairs of species also percolate. The bonds of any
two species may be broken without affecting the global
connectivity of the system.

In binary mixtures when the intraspecies bonds are
stronger than interspecies ones, the percolation diagram is
very rich and exhibits all types of gels. The reason is a
competition between entropy and internal energy. The entropy
of mixing promotes interspecies bonds which stabilize the
mixed gel. By contrast, the internal energy of bonding favours
intraspecies bonds which are dominant in the bicontinuous
gel. At high (low) temperature, the entropy (internal energy)
dominates and a mixed (bicontinuous) gel is formed. The same
competition occurs in ternary mixtures. The richest percolation
behaviour also arises when interspecies bonds are weaker than
intraspecies ones. An example is shown in Fig. 8 where we
plot the full percolation diagrams at different temperatures
for a system with bonding energies ϵαα = 1 (intraspecies)
and ϵαβ = 0.9ϵαα (interspecies) with α, β = 1,2,3 and α , β.
Given the excellent agreement between theory and simulations

for binary mixtures, we have studied the percolation diagrams
theoretically and simulated only selected systems for each
type of gel.

Decreasing the temperature leads to an increase in the
number of bonds, strengthening the percolated phases. As
we will see, decreasing the temperature decreases the regions
of the percolation diagram occupied by the weakest gels
and increases the regions occupied by the strongest ones.
Occasionally, two or more regions merge giving rise to a
new stronger gel. This observation describes the most relevant
features of the percolation behaviour of this type of ternary
mixtures.

The highest temperature considered is kBT/ϵAA = 0.135,
see Fig. 8(a). Although this is slightly below the percolation
temperature of a single component system, the percolation
diagram is dominated by a nonpercolated state. Only at
composition close to the pure systems does the ternary mixture
percolate. In these regions the percolation behaviour is very
rich (see the close up view in Fig. 8(a)). In the limit xi → 1,
a gel of species i occurs. By moving away from the pure
species, we find the sequence of gels MG(2) −MG(1) −MG(0)
and finally a nonpercolated state. To understand this sequence
consider the following. At xi = 1 the pure species has
percolated and thus also the subsets {i + j} and {i + k}. As we
decrease xi < 1, we replace particles of species i by particles of
species j and k and therefore reduce the number of intraspecies
bonds i. Since the temperature is high (slightly below the
percolation temperature), the decrease of intraspecies bonds
i disrupts the global connectivity of this species. Thus, the
next gel state is either a MG(2) where the subsets {i + j}
and {i + k} percolate or a MG(1) where only one of the
previous two subsets percolates. The compositions x j and xk

determine which of the gels, MG(2) or MG(1), is stable. Further
decreasing the number of intraspecies bonds i (i.e., moving
away from the vertices of the percolation diagram), the
subsets {i + j} or {i + k} become nonpercolating and the
state changes to a MG(0) where only the ternary mixture
percolates {1 + 2 + 3}. Finally, we find a transition between a
MG(0) and a nonpercolated state at compositions sufficiently
far from the pure system. The reason is that approaching the
center of the percolation diagrams increases the number of
interspecies bonds, which have the lowest energy, effectively
decreasing the percolation temperature.

The range of compositions where the mixture percolates
increases by further decreasing the temperature. At kBT/ϵAA
= 0.130 see Fig. 8(b), only a small region close to the
equimolar composition remains nonpercolated. There are no
new percolated states with the previous ones occupying a
larger area of the percolation diagram, especially the MG(0)
gel that has grown at the expense of the nonpercolated state.

At kBT/ϵAA = 0.120, see Fig. 8(c), the mixture has
percolated over the whole range of composition. The standard
gels, MG(2), and MG(1) continued to grow (occupying larger
regions of the percolation diagram) at the expense of the
MG(0) gel, which is the weakest and has been reduced to a
small region around the equimolar composition.

At kBT/ϵAA = 0.1125, see Fig. 8(d), the MG(0) gel has
disappeared. The three regions where the MG(2) gel is stable
have merged in the center of the percolation diagram, giving
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FIG. 8. Percolation diagrams (barycentric plots) of a ternary system of patchy colloids at different temperatures. In all cases, the total packing fraction is
η = 0.30. Species 1, 2, and 3 have three patches of types A, B, and C, respectively. Intraspecies bonds ϵαα = 1, α =A,B,C are stronger than the interspecies
bonds ϵαβ = 0.90ϵαα with α , β. The scaled-temperature is T ∗= kBT /ϵαα. Each color represents a different percolation state or gel (see the legend on the top
of the figure). In panels (a) and (e), we also show close up views of selected regions. The numbers between brackets indicate the species that have percolated
(e.g., {2+1} means that a mixture of species 2 and 1 percolates).

rise to a new state, the MG(3) gel, where any pair of species
percolates. The standard gels, which are the strongest at this
temperature, continue to grow at the expense of the weakest
gel, MG(1).

At the next temperature kBT/ϵAA = 0.11 (see Fig. 8(e)),
the MG(1) has disappeared and new states occur. Two standard
gels merge at compositions close to xi ≈ x j ≈ 0.5 giving rise
to bicontinuous gels of species i and j. Next to the regions
of stability of the bigels, a standard gel and a MG(3) gel have
merged and a Gel +MG(3) phase has appeared. The weakest
gel is now MG(2) and the strongest is no longer a standard gel
but a bigel.

Bigels and Gel +MG(3) states grow by further decreasing
T , see Fig. 8(f), and completely replace the weak MG(2) gel
state. At this point, the central MG(3) gel is the weakest
and starts to shrink. At kBT/ϵAA = 0.0975, see Fig. 8(g),
the MG(3) is confined to a small area near the equimolar
composition. The standard gels also shrink as the stronger gels
grow.

The trigel, the strongest of all gels, appears at the next
temperature kBT/ϵAA = 0.112 as a result of the merging of
the three bigels close to the equimolar composition, see
Fig. 8(h). If we continue to cool the system, the trigel grows
at the expense of the weaker gels, see Fig. 8(i). No further
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FIG. 9. Simulation results of a ternary mixture exhibiting a MG(0) gel (top panels) at kBT /ϵAA= 0.11 and a MG(3) gel (bottom panels) at kBT /ϵAA= 0.095. In
both cases the ternary mixture is equimolar (xi = 1/3 for i = 1,2, and 3) and the packing fraction is η = 0.30. The simulation box is cubic with length 9σ. The
intraspecies bonding energies are ϵαα = 1, α =A,B,C, stronger than interspecies bonds, ϵαβ = 0.90ϵαα with α , β. (a1) and (b1): Typical simulation snapshots.
(a2) and (b2): Graphical representation of the bonds; each line connects the center of mass of two bonded particles of species 3 (left), of species 1 and 3 (middle),
and of any of the species (right). (a3) and (b3): Probability of finding a cluster of size n of particles of species i (left), of species i or j (middle), and of any
species (right) as a function of the cluster size (normalized by the corresponding number of particles).

topological change of the percolation diagram occurs at lower
temperatures.

In addition to the theoretical percolation diagrams, we
have simulated selected systems at different compositions and
temperatures. In all cases we have found perfect agreement
of the sequences of percolated states as the temperature
decreases. For example, by cooling an equimolar system
(x1 = x2 = x3 = 1/3), the simulations exhibit the sequence
nonpercolated-MG(0)-MG(3)-trigel, as predicted by the theory.
As an example we show in Fig. 9 the simulation results
for the gels MG(0) (top panels) and MG(3) (bottom panels),
obtained by decreasing the temperature from a nonpercolated
state. The only relevant difference was the temperature at
which each phase appears. We found, for example, that a
trigel is stable at temperatures kBT/ϵAA . 0.075, whereas
theoretically we observe stable trigels at kBT/ϵAA ≈ 0.09. As
for binary mixtures, the theory overestimates the percolation
temperature of each type of gel. This discrepancy is attributed
to the neglect of correlations between bonds in the theoretical
description.

We have also computed the percolation diagrams for
other sets of bonding energies, and the sequence of states
and topology of the percolation diagrams is always similar
(the symmetry is obviously lost in cases with asymmetric
interaction energies). The most significant differences occur
if all interspecies bonds are energetically more favorable than
the intraspecies bonds. In this case, the trigel and the bigels are

not stable since they require a predominance of interspecies
bonds. Also, the percolation temperature of the weakest MG(0)
gel has a maximum at the equimolar composition, instead of
a minimum (like in Figs. 8(a) and 8(b)). This is analogous to
what happens in binary mixtures.

IV. DISCUSSION

We have considered the percolation transition in binary
and ternary mixtures of patchy colloidal particles, at fixed
packing fraction (η = 0.30). The results of Wertheim’s theory
and Monte Carlo simulations indicate that a pure system of
patchy particles with three identical patches at this packing
fraction is thermodynamically stable over the whole range of
temperature,8 i.e., there is no liquid-gas or liquid-solid phase
separation at η = 0.30. The addition of other species might
change the stability of the fluid phase. For example, we expect
demixing at sufficiently low temperatures if the intraspecies
bonds are stronger than the interspecies ones, in line with
Wertheim’s theory for binary mixtures.11 Nevertheless, in
Ref. 11 we have shown that it is possible to design more
complex patchy colloids (with different types of patches) in
order to suppress the phase separation and stabilize the desired
gels. In addition, arrested phase separation might occur and
effectively stabilize the gel. An example is the formation
of bigels in mixtures of DNA-coated colloids as a result of
arrested demixing.19
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Our theoretical description neglects the effect of
correlations between bonds such as the formation of closed
loops. Nevertheless, simulations (correlations included) and
theory (no correlations) are in semi-quantitative agreement.
The effect of correlations between bonds in the present model
simply shifts the percolation threshold to lower temperatures.
The bonding probabilities are almost unaffected if correlations
are included. This is not a general feature, as correlations
between bonds, and in particular closed loops, could have
a major impact in the percolation behaviour of the system.
This might occur in systems where the formation of ring-like
structures is favoured. For example, in a system of particles
with two patches of type A near the poles and several patches
of type B on the equator,28 the formation of rings through AA
bonds leads to a lower critical point in the liquid-vapor binodal.
See Refs. 29 and 30 for recent discussions of extensions of
Wertheim’s theory to include the effect of loops.

We have characterized the percolated states or gels
according to the species that are percolated. For example,
in a bigel there are two species that percolate independently.
One can also characterize the states according to the types of
bonds that are percolated. In this case one can, for example,
distinguish between two types of bigels, one bigel where there
are only two percolated networks formed by intraspecies
bonds and another bigel where the interspecies bonds also
form a percolated network.

Our model may help to understand network formation
in other systems such as ABC block terpolymers31 and
ternary polymer blends.32 In these systems one can find
percolated states analogous to those described here. For
example, the percolation behaviour of a ternary polymer blend
made of high-density polyethylene, polystyrene, and PMMA
is topologically similar to the low temperature percolation
behaviour of the ternary mixture analyzed here33 (Fig. 8(h)).

Future studies will focus on the percolation behaviour
under gravity. A gravitational field is, in general, unavoidable
in sedimentation experiments and might have a profound
effect on colloidal mixtures.34 For example, in a mixture of
patchy colloids with two and three patches (all of the same
type), gravity induces the formation of complex sequences in
sedimentation-diffusion-equilibrium such as the presence of
re-entrant percolation.35
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