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Abstract
We give a full account of a recently proposed theory that explicitly relates the bulk phase
diagram of a binary colloidal mixture to its phase stacking phenomenology under gravity (de
las Heras and Schmidt 2013 Soft Matter 9 8636). As we demonstrate, the full set of possible
phase stacking sequences in sedimentation-diffusion equilibrium originates from straight lines
(sedimentation paths) in the chemical potential representation of the bulk phase diagram.
From the analysis of various standard topologies of bulk phase diagrams, we conclude that the
corresponding sedimentation stacking diagrams can be very rich, even more so when finite
sample height is taken into account. We apply the theory to obtain the stacking diagram of a
mixture of nonadsorbing polymers and colloids. We also present a catalog of generic phase
diagrams in the plane of chemical potentials in order to facilitate the practical application of
our concept, which also generalizes to multi-component mixtures.
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1. Introduction

Binary colloidal mixtures are fascinating objects of study for
a variety of reasons, including their role as model systems for
more complex industrial products, but also for their suitability
to investigate fundamental phenomena in condensed matter,
such as the occurrence of complex phase behaviour [1–5]. In
particular using (well-controlled) particle shapes of one or both
colloidal components opens up a vast phase phenomenology of
collective ordering phenomena both in bulk and at interfaces.

Carrying out systematic studies of binary mixtures is often
significantly more challenging than studying corresponding
one-component systems. As the presence of gravitational
effects in the lab is often unavoidable, these are commonly
used as a tool to study the collective behaviour of
colloidal mixtures [6]. The theoretical modelling of
sedimentation via height-dependent density profiles [7] that
are caused by the external gravitational potential is in
principle straightforward. Nevertheless, drawing systematic
conclusions from observations of the phenomena under gravity
about the (often unknown) bulk phase diagram constitutes

a highly demanding task. Furthermore, besides being a
primary experimental tool, the analysis of sedimentation also
reveals genuinely new phenomena, such as e.g. the emergence
of floating phases [8], and zone formation due to interplay
between sedimentation and phase ordering [9]. For a recent
review on sedimentation see [10].

Parola and coworkers recently developed a microscopic
theory [11], based on Statistical Mechanics, of the buoancy
effects that are due to the ‘granular’ character of a suspending
colloidal dispersion. Here the ‘solute’ colloid is different in
size and its properties from the ‘bath’ colloids. As Parola
et al demonstrate very convincingly, a modified, generalized
Archimedes principle applies in this case. On its basis, the
authors rationalize the sedimentation behavior of a dilute
component in a dense colloidal background of a primary
component, as is a very relevant case, see the body of
experimental work by Piazza and coworkers [11, 12].

Our recently proposed approach [13] complements the
work of Parola et al in that we do not impose the restriction
of infinite dilution of the solute colloid, which enables us
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address phase transitions in the full binary mixture (not just
in the background component). Furthermore, our approach is
generic in the sense that the bulk phase diagram is considered
as input to the theory. We place particular emphasis on the
chemical potential representation of the bulk phase diagram,
which we find to be particularly well suited for the analysis
of sedimentation in dense systems. The theory applies
generically, whether the bulk phase diagram originates from
a microscopic treatment, such as the approach by Parola and
coworkers [11, 12], or classical density functional theory, or
approaches such as the free volume theory [14] (which we
employ in one of the cases studied below).

The present contribution serves several purposes. First,
we extend our previous short account [13]: we investigate the
role of an inflection point in the bulk binodal; we expand the
description of an alternative thermodynamic variable set (rmin,
α plane), and show results for both ‘realistic’ and ‘complex’
stacking diagram.

Second, we show the stacking diagram for a mixture
of polymers and platelets with both infinite and finite
sedimentation paths. Here we show the stacking diagram
for finite paths in several planes in order to demonstrate the
equivalence of the chemical potential representation with other,
more common representations for the bulk phase diagram.

Third, we show schematically for a variety of
relevant topologies the correspondence between the pressure-
composition and the chemical potential representation of the
bulk phase diagrams.

2. Theory

2.1. The sedimentation path

Consider a binary colloidal mixture in a given solvent and in
presence of gravity. In sedimentation-diffusion equilibrium,
we can define a height-dependent local chemical potential [8,
13, 15] for each species i = 1, 2:

ψ1(z) = µb
1 − m1gz,

ψ2(z) = µb
2 − m2gz, (1)

where µb
i is the bulk chemical potential of species i, mi is

its buoyant mass, z is the vertical coordinate, and g is the
acceleration of gravity. Eliminating the spatial dependency of
the local chemical potentials in equation (1) results in

ψ2(ψ1) = a + sψ1, (2)

where both a and s are constants given by

a = µb
2 − sµb

1,

s = m2/m1. (3)

Equation (2) represents a line segment, the sedimentation path,
in the plane of local chemical potentials. The sedimentation
path describes the variation of local chemical potentials along
the sedimented colloidal mixture.

Next, we introduce a local density approximation
(LDA) [13] assuming that locally, i.e. at any z, the state of the

system is the same as an equilibrium bulk state with chemical
potentials µi that equal the local chemical potentials, i.e.:

µi = ψi(z). (4)

This approximation is justified if the relevant correlation
lengths in the system are small compared to the gravitational
lengths of the colloids ξi = kBT/(mig), where kB is the
Boltzmann constant and T is the absolute temperature. In
colloidal systems ξ is typically of the order of millimeters
or centimeters. Hence, the LDA can often be an accurate
approximation for the system under consideration.

The LDA allow us to directly relate the sedimentation
path, equation (2), and the stacking sequence observed in
the sample because an interface in the sample corresponds to
a crossing between the path and a binodal in the chemical
potential representation of the bulk phase diagram. In order
to illustrate this point, we show in figure 1(a) a schematic
bulk phase diagram of a binary mixture in the plane of both
chemical potentials. In bulk there are two stable phases, A
and B, that coexist along the binodal. The sedimentation
path starts (bottom) in the region where A is stable. Then
it crosses the binodal entering the region of stability of B.
Finally it crosses again the binodal and ends (top) in the region
of stability of A. The corresponding stacking sequence is ABA,
i.e. bottom A, middle B, and top A. In what follows we
label the sequence of stacks from bottom to top of the sample.
Paths that cross a binodal twice, such as the one shown in
figure 1(a), were recently used in order to rationalize the
experimental observations in a mixture of gibbsite platelets
and silica spheres [8].

The (macroscopic) distance between two heights in the
sample can be directly transformed into the difference of
chemical potentials in the bulk phase diagram via equation (1).
For example, the difference in chemical potentials, �µi ,
between the crossing points of the binodal and the path in
figure 1(a) is proportional to hB , the thickness of the B stack
in the sample, �µi = −mighB . Hence, the difference in
chemical potentials between two heights in the sample is an
experimentally accessible quantity.

A sedimentation path is fully specified by its slope, length,
direction and position in the chemical representation of the bulk
phase diagram. Each of these variables is related to physical
parameters of the system:

• The slope, s, of a sedimentation path is given by the ratio
of the buoyant masses, see equation (3), or by the inverse
ratio of the gravitational lengths s = ξ1/ξ2. The buoyant
mass is mi = (ρi −ρs)vi , with ρs the solvent density, and
ρi and vi the mass density and particle volume of species i,
respectively. Hence the slope of the path can be written as:

s = (ρ2 − ρs)v2

(ρ1 − ρs)v1
. (5)

Therefore, one can experimentally control s by e.g.
varying the density of the solvent, provided that ρ1 �= ρ2,
see figure 1(b). Alternatively, one could vary s by varying
the buoyant mass of one species by, e.g. designing colloids
with inner cores made of a different material [16].
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(a)

(b)

Figure 1. (a) Schematic bulk phase diagram of a colloidal binary
mixture in the plane of chemical potentials µ1, µ2. The black-solid
line is a binodal where phases A and B coexist. The red-dashed line
is a sedimentation path, the direction of which (from bottom to top)
is specified by an arrow. The inset represents the stacking sequence
corresponding to the sedimentation path: ABA. The differences in
chemical potentials �µi are proportional to the thickness of the
middle stack hB . (b) Slope of the sedimentation path s = m2/m1 as
a function of the solvent density scaled with the mass density of
species 1, ρs/ρ1. The curve is qualitatively the same independently
of the mass densities ρi and particles volumes vi provided that
ρ1 �= ρ2. If ρ1 = ρ2 the slope of the sedimentation path is constant
and equal to the ratio between the particle volumes.

• The length of the path in the µ1, µ2 plane is fixed by the
buoyant masses and the height of the container, h. The
difference in local chemical potentials from top to bottom
of the sample is, see equation (1), �µT

i = −migh.

• The direction of a sedimentation path is determined by the
signs of the buoyant masses. If mi is positive (negative)
then µi(z) decreases (increases) from bottom to top of the
sample. In the example of figure 1(a) both, m1 and m2, are
positive. Again by changing the density of the solvent it
would be possible to change the sign of the buoyant mass.

• The location of the path in the plane of chemical potentials
is given by the bulk chemical potentials of the sample in
absence of gravity. Hence, the location is determined by
the overall composition and concentration of the mixture.

Each sedimentation path is associated with a correspond-
ing phase stacking sequence. The set all possible stacking
sequences for a given bulk phase diagram forms the stacking
diagram. The phase space of the stacking diagram is that of the
sedimentation path, i.e. slope, length, position and direction
of the path. Hence, the stacking diagram is a multidimensional
object. However, in a standard sedimentation experiment of
colloidal mixtures, the height of the sample is h ∼ 1 cm. This
implies a length of the sedimentation path of several kBT [8]
that typically covers the whole bulk phase diagram of the mix-
ture. This allow us to simplify the representation of the stack-
ing diagram by neglecting effects due to the finite height of the
sample (we will mention the effect of having a finite sample
latter). Under this approximation a sedimentation path is a
straight line (instead of a line segment) that can be described
using the parameters a and s, see equation (3) and figure 2(a).
Both a and s, together with the direction of the path, are our
choice for the parameter space of the stacking diagram. Alter-
natively, we also use α and rmin as a different parameter space,
see figure 2(a). α is the angle between the path and the µ1 axis.
|rmin| is the minimum radius of a circle centered at the origin
of the chemical potentials and tangent to the path. In order
to distinguish between two paths with the same value of α but
opposite values of a we ascribe a sign to rmin, which we choose
to be positive (negative) for a clockwise (anticlockwise) path,
see figure 2(b).

2.2. The stacking diagram

In order to construct the stacking diagram we need to find the
boundaries between distinct stacking sequences in the a−s pa-
rameter space. There are three types of boundaries, which we
refer to as sedimentation binodals, terminal lines and asymp-
totic terminal lines, as described in the following.

2.2.1. Sedimentation binodal. A sedimentation path tangent
to a binodal in the bulk phase diagram is a special path. Any
infinitesimal variation of the values a or s of the path changes
the corresponding stacking sequence, see figure 2(c). The set
of all paths (represented by a and s) that are tangent to a bulk
binodal forms the sedimentation binodal. Let µ2,AB(µ1) be the
parameterization as a function of µ1 of the chemical potential
of species 2 at bulk AB phase coexistence. The sedimentation
paths that are tangent to the AB binodal then are those that
satisfy

aAB(s) = µ2,AB(µ1) − µ1s, (6)

where the slope, s, of the path is given by

s = dµ2,AB

dµ1
. (7)

Equation (6) constitutes the Legendre transform of the bulk
binodal in the chemical potential representation.
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(a)

(b)

(c)

Figure 2. (a) A sedimentation path (red-dashed line) in the plane of
chemical potentials µ1, µ2; the arrow indicates its direction. α is the
angle between the path and the µ1-axis. a is the y-value of the path
at the intersection with the µ2-axis. |rmin| is minimum distance
between the path and the origin. (b) Sing convention for rmin:
positive (left) for a clockwise path and negative (right) for an
anticlockwise path. The sign convention allow us to distinguish
paths with the same α but opposite a. (c) Schematic bulk phase
diagram in the plane of chemical potentials µ1, µ2. Two phases A
and B coexist along the binodal curve (black-solid line). The binodal
starts at a phase transition of the species 2 (horizontal asymptote)
and ends at a critical point (empty circle). Three sedimentation
paths are shown (red-dashed lines). They all correspond to
boundaries between two stacking sequences in the stacking diagram.
An infinitesimal change of the path changes the stacking sequence.

2.2.2. Terminal line. A sedimentation path that crosses a
critical point constitutes a further special case. An example of
such a path is depicted in figure 2(c). The stacking sequence

changes by infinitesimally varying the intercept of the path,
a. The sequence is, however, robust against any changes
in the value of s. In fact, any path that crosses an end
point of a binodal (which can be a critical point, triple point,
tricritical point, critical end point etc.) is special in the same
sense and corresponds to a boundary between two different
sequences in the stacking diagram. Let µi,end be the chemical
potential of species i at an ending point of a binodal. Then the
relation

aend(s) = µ2,end − µ1,ends, (8)

describes all the sedimentation paths that cross the end point.
Equation (8) describes a line in the a − s plane, which we refer
to as the terminal line.

2.2.3. Asymptotic terminal line. A bulk binodal does not
terminate at finite chemical potentials, if it is connected to a
phase transition of one of the pure components of the system.
In this case the binodal has a horizontal or vertical asymptote in
the plane of chemical potentials. Furthermore, a binodal that
represents a demixing region at high chemical potentials does
not terminate at finite chemical potentials either. In this case,
the binodal tends also to an asymptote with a well defined
slope, which can be rationalized as follows. The slope of a
binodal representing the coexistence between phases A and B
is given by:

dµ2,AB

dµ1
= −�ρ1,AB

�ρ2,AB
, (9)

where �ρi,AB is the density jump of species i at AB
coexistence. At very high chemical potentials both species will
reach the close packing densities and the slope of the binodal
will be constant.

Hence all binodals that do not terminate at finite values of
the chemical potentials tend to an asymptote with a well define
slope,

µ2,AB

µ1,AB
→ s∞. (10)

A sedimentation path that is parallel to an asymptote of a
binodal constitutes a boundary between two different stacking
sequences in the stacking diagram, because a change in the
slope of the path modifies the sedimentation state. An example
of such a path is shown in figure 2(c). In the stacking diagram,
all paths with s(a) = s∞ = const, describe a line, which we
refer to as the asymptotic terminal line.

3. Results

We apply our theory to obtain the stacking diagrams that
corresponds to different model bulk phase diagrams. The
bulk phase diagrams that we use do not stem from a
microscopic treatment of a model Hamiltonian. They are
rather intended to provide relevant examples of the stacking
diagrams. Technically, we model the bulk binodals in the plane
of chemical potentials using Bézier curves.
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3.1. Binodal ending at two critical points

In figure 3(a) we show a bulk phase diagram with the simple
topology of a single binodal that ends at two critical points.
Phases A and B coexist along the binodal. The stacking
diagram, (b) and (c), consists on a sedimentation binodal
(formed by those paths tangent to the bulk binodal) and two
terminal lines (formed by those paths that cross the critical
points). The terminal lines and the sedimentation binodal
divide the stacking diagram in different regions. Each region
correspond to a qualitatively different stacking sequence. The
stacking sequence of each region can be found as follows: (i)
select a point in the stacking diagram that lies in the region of
interest, (ii) plot the corresponding sedimentation path in the
bulk phase diagram, and (iii) obtain the stacking sequence by
finding the crossing points between the path and the binodal
(see a selection of different paths in figure 3(a). Two paths with
the same slope and same intercept, but opposite directions, give
rise to stacking sequences with reversed order (e.g. AB and
BA). In order to avoid this ambiguity when representing the
stacking diagram in the plane of the slope and intercept, we
show only those paths with m1 > 0 in figure 3(a). To obtain the
stacking diagram in the case m1 < 0, one only needs to reverse
the staking sequences. The alternative α, rmin representation
of the stacking diagram, figure 3(b), includes all possible cases
(not only m1 < 0), because we allow α ∈ [0, 2π ]. Each bulk
binodal generates two sedimentation binodals in the α, rmin

representation of the stacking diagram, because a path tangent
to a binodal has two directions, given by the pair α and α + π .
The points in the stacking diagrams where two terminal lines
intersect are paths that cross two ending points of a binodal in
the bulk phase diagram.

This basic example shows already the potential richness
of the stacking diagram. Although there are only two stable
phases in bulk, the stacking diagram contains up to five
different stacking sequences. One of them is the sequence
ABA that originates whenever a path crosses the bulk binodal
twice. A similar phenomenon was theoretically predicted and
experimentally found in mixtures of gibbsite platelets and
silica spheres [8]. Note that two consecutive phases in the
stacking sequence must display coexistence in the bulk phase
diagram. However, as we learn from this example, two non-
consecutive phases may or may not coexist in bulk. Moreover,
in the example the bottom and top phases of the ABA sequence
are the same, which constitutes a reentrant phenomenon.

3.2. The role of an inflection point

The curvature of the bulk binodal in the chemical potential
representation plays an important role in determining the
stacking diagram. Besides affecting the shape of the
corresponding sedimentation binodal, the curvature can also
affect the topology of the stacking diagram. In figure 4(a)
we show a schematic bulk phase diagram in which a binodal
ends at two critical points, as in the previous example.
However, a change in the curvature of the binodal introduces
an inflection point. An inflection point in a binodal has
been recently predicted in mixtures of colloidal platelets and
spheres [8] and it may be a common feature of binodals

(a)

(b)

(c)

Figure 3. (a) Schematic bulk phase diagram of a binary mixture in
the plane of chemical potentials µ1, µ2. Two phases, A and B,
coexist along the binodal line (black-solid line). The empty circles
are critical points. The dashed lines are representative sedimentation
paths (the arrows give the directions from bottom to top of the
sample and the labels indicates the stacking sequence). Chemical
potentials are given in arbitrary units. (b) Phase stacking diagram in
the plane of slope s and intercept of the sedimentation path. Here
we set m1 > 0. (c) Phase stacking diagram in the α, rmin plane. In
(b) and (c) the different stacking regions are coloured and the
labelled (from bottom to top) by their respective stacking sequences.
Sedimentation binodals are represented by black-solid lines and
terminal lines are depicted as dashed lines. The black squares in (b)
and (c) indicate the path that crosses both critical points in (a).

that connect two transitions of the pure components of a
mixture [13]. The presence of an inflection point generates
additional stacking sequences, because it increases the number
of possible intersections between a sedimentation path and the
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(a)

(b)

(c)

Figure 4. (a) Schematic bulk phase diagram of a mixture in the
plane of chemical potentials, µ1 − µ2. Stacking diagram of the
mixture in the s, a (b) and α, rmin (c) planes. See caption of figure 3
for a full description.

binodal that contains the inflection point. The path BABA in
figure 4(a) which crosses the binodal three times is an example.
The stacking diagram of this mixture is depicted in panels (b)
and (c) of figure 4. As in the previous example, the stacking
diagram possesses one sedimentation binodal and two terminal
lines. There are in total eight possible stacking sequences.
Due to the presence of the inflection point the sedimentation
binodal is multivalued; there are sedimentation paths tangent
to the binodal that share the same slope, s, but have different
intercept, a. The sedimentation binodal has also a kink, which
corresponds to the path tangent to the binodal at the inflection
point.

3.3. Transitions in the pure subsystems of the mixture

We next consider that at least one of the pure components of
the mixture undergoes a phase transition in bulk. In figure 5
we show several model bulk phase diagrams (first column)
and their corresponding stacking diagrams (second and third
columns). The bulk phase diagram in figure 5(a1) consists of
a binodal that ends at two critical points. Its corresponding
stacking diagram is formed by a sedimentation binodal and
two terminal lines, see (b1) and (c1).

We now replace the upper critical point of the binodal
by a phase transition in the pure subsystem of species 2.
This bulk phase diagram is depicted in figure 5(a2). The
binodal tends asymptotically to the value of µ2 at the transition
(limµ1→−∞ µ2 = 0.89). In the stacking diagram, see (b2) and
(c2), we observe three types of boundaries: (i) a sedimentation
binodal (obtained as the Legendre transform of the bulk
binodal), (ii) a terminal line (all paths that cross the critical
point), and (iii) an asymptotic terminal line (due to the phase
transition of the pure species 2). The asymptotic terminal line
is a vertical line (s = 0) in the s, a representation of the stacking
diagram, figure (b2). It represents all the sedimentation paths
that are parallel to the asymptotic behaviour of the binodal in
the bulk phase diagram (i.e. paths with a horizontal slope). In
the α, rmin plane of the stacking diagram, (c2), the asymptotic
terminal line is also a vertical line at α = 0 and α = π . Here
not only the slope but also the direction of paths with horizontal
slope in the bulk phase diagram is represented and hence there
are two asymptotic terminal lines.

In panel (a3) of figure 5 we show a model bulk phase
diagram similar to that in (a1), but in which we have replaced
the lower critical point by a phase transition of species 1. As
a result the binodal has a vertical asymptote and tends to the
value of µ1 at the transition (limµ2→−∞ µ1 = 0.89). The
asymptotic terminal line corresponding to this transition is not
visible in the s, a plane of the stacking diagram, (b3), because
it is vertical and hence s → ∞. In this case the α, rmin plane,
(c3), is more suitable to represent the stacking diagram. Here
the asymptotic terminal line is represented by vertical lines at
α = π/2 and α = 3π/2 (sedimentation paths with vertical
slope in the bulk phase diagram).

For completeness we show in (a4) the bulk phase diagram
in which the binodal connects both phase transitions, one for
each pure species. The stacking diagram, figure 5(b4) and (c4),
is composed of a sedimentation binodal and two asymptotic
terminal lines. No terminal line is present as there is no bulk
critical point.

In all the examples of figure 5 the set of possible stacking
sequences is the same. However, the topology of the stacking
diagram is quite different, as it depends not only on the
number of stable phases in bulk, but also on the details of the
bulk binodals such as curvature, ending points and asymptotic
behaviour.

3.4. A realistic phase diagram

Real mixtures are by far more complex and typically possess
many more than the two stable bulk phases considered above.
We hence consider the stacking diagram of a model mixture
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(a4) (c4)(b4)

(c3)(b3)(a3)

(c2)(b2)(a2)

(c1)(b1)(a1)

Figure 5. Schematic bulk phase diagrams of a mixture in the plane of chemical potentials µ1, µ2 (first column) and their corresponding
stacking diagrams in the plane of slope, s, and intercept, a, of the sedimentation path (second row) or in the α, rmin plane (third column).
Chemical potentials are given in arbitrary units. In the second column we use m1 > 0. There are two phases A and B that coexist along a
binodal that: ends at two critical points (a1); ends at one critical point and at a phase transition in the pure system of species 2 (a2) or
species 1 (a3); connects two phase transitions of the pure components of the mixture (a4). The solid black lines are the bulk (first column)
and sedimentation (second and third column) binodals. Empty circles are critical points. Dashed (dotted) black lines are terminal lines
(asymptotic terminal lines). The regions in the stacking diagrams have been coloured and labeled according to their stacking sequences.
Selected sedimentation paths have been represented in the bulk phase diagram with an arrow indicating their direction and have been
labelled according to their stacking sequence.

with six stable bulk phases in order to illustrate the complexity
of the stacking diagram that we can expect in real mixtures.
The chemical potential representation of the bulk phase

diagram is shown in figure 6(a). The monocomponent system
of species 1 undergoes three first order phase transitions by
increasing µ1: A-C, C-D and D-E. The species 2 undergoes
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(a) (b)

Figure 6. (a) Schematic bulk phase diagram of a model binary mixture in the plane of chemical potentials µ1, µ2. Chemical potentials are
given in arbitrary units. Binodal lines are represented by black-solid lines. The empty circle is a critical point. The black triangles are triple
points. (b) Stacking diagram of the mixture in the α, rmin plane. Black-solid lines are sedimentation binodals. Dashed lines are terminal
lines. Dotted vertical lines are asymptotic terminal lines. The inset is a zoom of a small region of the stacking diagram. Each phase has been
colored and some of them are labelled with the stacking sequence. Although some colors are repeated, each region correspond to a distinct
stacking sequence.

only a B-F first order phase transition. At very high chemical
potentials there is a large demixing region between phases E
and F. At intermediate chemical potentials there is a transition
between phases A and B (see the binodal ending at a critical
point). Four different triple points occur. A bulk phase diagram
like the present one might be representative of, for example, a
colloidal mixture of hard spheres and highly anisotropic rods.
The sequence of phases for rods (species 1) by increasing the
µ1 could represent isotropic-nematic-smectic-solid, and for the
pure spheres (species 2) there is a liquid-solid phase transition.
A demixing between two isotropic phases, one rich in rods
and the other rich in spheres, might correspond to the phase
transition between A and B in figure 6(a).

The corresponding stacking diagram in the α, rmin plane
is depicted in panel (b) of figure 6. The boundaries in the
stacking diagram are determined by:

• 18 sedimentation binodals: two sedimentation binodals
per each bulk binodal because both directions of the
sedimentation paths are considered.

• 5 terminal lines: one for each triple point (4 in total) and
one further due to the critical point.

• 6 terminal lines: the A-B, C-D, D-E bulk binodals have
a vertical asymptote and generate an asymptotic terminal
line at α = π/2 and α = 3π/2. The F-B bulk binodal has
a horizontal asymptote and its corresponding asymptotic
terminal line is located at α = 0 and α = π . We
assume that the F-E binodal has an oblique asymptote, and
therefore it generates an asymptotic terminal line (located
at α = 0.37π and α = 1.37π ).

The stacking diagram is extremely rich, with more
than 100 different stacking sequences. The complexity is
particularly evident in the region where the slope of the
sedimentation path matches approximately the slope of the
demixing region in the bulk phase diagram (i.e. a line that
connects the triple points in the µ1, µ2 representation). This
region is represented as an inset in panel (b) of figure 6. About
40 different sedimentation phases are possible in this tiny
portion of the stacking diagram, such as for example the exotic

EBEDBDCBACA sequence with 11 layers. This number is
larger than the stable number of phases in bulk because several
phases reenter the sequence. Hence, an interesting question
arises: what is the maximal number of stacks that can appear
in a mixture under gravity? We address this question in the
following.

3.5. Extended Gibbs phase rule for mixtures under gravity

The Gibbs phase rule determines the maximal number of
phases that can coexist in bulk. As discussed above, two non-
consecutive phases in a stacking sequence may or may not
coexist in bulk. Hence, the number of stacks in a given stacking
sequence is not limited by the Gibbs phase rule. Instead, the
maximal number Nmax of stacks in sedimentation-diffusion
equilibrium of a binary mixture is given by

Nmax = 3 + 2(nb − 1) + ni, (11)

where nb is the total number of binodals that are present in the
bulk phase diagram and ni is their total number of inflection
points. In order to reach Nmax, a sedimentation path has to
cross each binodal 2 + nb,i times, where nb.i is the number of
inflection points of the binodal. In general, Nmax is a much
larger number compared to the maximal number of possible
phases coexisting in bulk (3 in an athermal binary mixture).
For example, in a mixture with a triple point there are at least
three binodals, which sets Nmax � 7. Therefore, it might not
be surprising to find experimentally colloidal mixtures with
sequences that contains 6 stacks, like the one in [17].

3.6. Finite size effects

Until now we have discussed the stacking diagram considering
the sedimentation paths as infinitely long straight lines. We
next turn to the case of a mixture in a vessel with finite height,
h. As a result, any sedimentation path is a line segment (of
finite length) in the plane of chemical potentials. The length
of the path is proportional to h. The main effect of the finite
sample is that the stacking diagram becomes even richer in
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(a) (d)

(b) (e)

(f)(c)

Figure 7. (left column) Bulk phase diagram of a mixture of nonadsorbing polymers and colloidal platelets in the plane of: (a) chemical
potential of colloids µc and polymers µp , (b) packing fraction of colloids, ρcvc, and concentration of polymers cp in grams per liter, and (c)
packing fraction of colloids ρcvc and fugacity of polymers zp . Empty circles are critical points. Filled triangles (a) and dotted lines (b, c) are
triple points. Solid lines are binodals. The grey areas in (b, c) are two-phase regions. The dashed red line in (a) is a sedimentation path of a
sample with h = 10 mm that corresponds to a boundary between two stacking sequences in the stacking diagram. The coordinates of its
middle point are equal to the average chemical potential along the path. (right column) Stacking diagram of the mixture in a vessel with
height h = 10 mm (left), 20 mm (center), and 40 mm (right). The different planes are the same as for the bulk phase diagrams (a–c) but
considering the average of the quantity of interest along the sedimented sample. For example 〈ρcvc〉 is the average packing fraction of
colloids in the vessel. Solid lines are sedimentation binodals and dashed lines are terminal lines. Each region has been coloured and labelled
according to the stacking sequence (from bottom to top of the sample).

that new stacking sequences appear. These are the formed by
removing layer(s) on top or bottom of the stacking sequence
corresponding to h → ∞.

As a concrete example we study a mixture of nonadsorbing
polymers and hard core colloidal platelets. We use a
perturbation theory developed by Zhang et al to study the phase
behaviour of the mixture. We refer the reader to [18] for all
the details about the theory. The platelets are modeled by
cut spheres with diameter D and thickness L, that is, spheres
of diameter D cut by two parallel planes equidistant from an
equatorial plane and separated by a distance L. The polymers
are treated using the Asakura–Oosawa–Vrij model [19, 20], i.e.
ideal polymer spheres that cannot overlap with the colloidal
platelets. We study the case in which the aspect ratio of
the colloidal platelets is L/D = 0.05 and the size ratio of
polymer and colloid is σp/D = 0.355, where σp = 2Rp and
Rp is the radius of gyration of the polymers. These values
are comparable to those in the experimental system analysed
in [21]. The sedimentation of this mixture has also been
previously studied in [14] using a different approach.

In figure 7 we show the bulk phase diagram of the
mixture. In (a) we use the plane of chemical potentials,
µc, µp, where µc is the chemical potentials of the colloidal
platelets and µp is that of the polymers. In (b) the bulk phase
diagram is represented in the plane of polymer concentration,
cp, and packing fraction of colloids, ρcvc, where ρc is the
number density of the colloids and vc the volume of one
colloid. To obtain cp we set the molar mass of the polymers
to 4.2 × 105 g mol−1, which corresponds to trimethylsiloxy-
terminated polydimethylsiloxane used in [21]. Finally, in
(c), we use the plane of fugacity of the polymers, zp, and
packing fraction of platelets, ρcvc. Here, zp = exp(βµp)

with β = 1/kBT . The monocomponent system of colloids
(i.e. µp → −∞, cp = 0 and zp → 0) undergoes two first
order phase transitions: isotropic-nematic, I2-N, and nematic-
columnar, N-C. The addition of polymers gives rise to new
phenomenology: (i) a demixing region occurs at low polymer
concentration between two isotropic states I1-I2 bounded by a
lower critical point, (ii) two triple points, I1-I2-N, and I1-N-C,
and (iii) two demixing regions, I1-N and I1-C, at intermediate
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and high polymer concentrations, respectively. The I1-C
binodal might either end in an isotropic-columnar-crystal triple
point or continue for very high chemical potentials. Here we
assume the second scenario in order to obtain the stacking
diagrams.

We use the chemical representation of the bulk phase
diagram to obtain the stacking diagram in the α, rmin plane,
see figure 8. For the case of infinite sample height we have
identified already 24 different stacking sequences (some of
them are not labelled in the figure due to the tiny portion of the
stacking diagram in which they are stable).

As discussed in section 2.1, the stacking diagram for
finite sample height requires five variables to fully specify
each (finite) sedimentation path. In order to simplify this
parameter space we fix the slope, the length and the direction
of the path. We then vary the location of the path in the plane
of chemical potentials by varying the average local chemical
potentials of each species 〈µi〉, with i = p, c. Here 〈µi〉
is the local chemical potential in the middle of the sample,
i.e. at height z = h/2. We set the buoyant mass of the
colloids to mc = 2.93 × 10−6 g, equivalent to a gravitational
length ξc = 1.41 mm at room temperature (mc has been
calculated for gibbsite platelets dispersed in toluene using the
particle dimensions specified in [21]). The buoyant mass of
the polymers, mp, is negligible compared to that of the colloids
and hence we fix the slope of the path to s = mp/mc → 0.
The local chemical potential of the colloids decreases from
bottom to top because mc > 0, which fixes the direction of
the sedimentation path. We consider three different values
of height, h = 10, 20 and 40 mm. A sedimentation path
that starts or ends at a binodal line forms a boundary in the
stacking diagram (see an example in figure 7(a) for the case
h = 10 mm). Such paths form the sedimentation binodals in
the stacking diagram. The terminal lines are given by those
paths that cross an ending point of a binodal in the chemical
potential representation. No asymptotic terminal lines are
present because the slope of the path is prescribed and hence
does not vary.

In figure 7(d) we show the stacking diagram for finite
h in the 〈µc〉, 〈µp〉 plane. It is interesting to compare the
number of possible stacking sequences with the limiting case
h → ∞ (vertical line at α = π in figure 8). For h → ∞ there
are 4 possible stacking sequences: CI1, CNI1, CNI2I1, and
CNI2. However, the diagrams for finite height are much richer.
New stacking sequences appear, which are subsequences (i.e.
truncated versions) of a corresponding infinite path. The
height of the sample is a crucial parameter which modifies the
stacking diagram not only quantitatively but also qualitatively.
An example is the sequence CNI2 that occurs in the case of
h = 20 and 40 mm but not for h = 10 mm, because in the
latter case the paths are too short to simultaneously cross both
binodals C-N and I-N2. As a result the stacking sequence CNI2

is replaced by N in samples with small h.
Once the chemical potential representation of the

stacking diagram is known, we can transform it into
further representations, such as into the plane of polymer
concentration and packing fraction of colloids (figure 7(e)), or
the plane of polymer fugacity and packing fraction of colloids

Figure 8. Stacking diagram of a mixture of nonadsorbing polymers
and colloidal platelets in the rmin, α plane. Solid lines are
sedimentation binodals. Dashed lines are terminal lines. Vertical
dotted lines are asymptotic terminal lines. The regions that cover a
significant portion of the stacking diagram have been coloured and
labelled according to their stacking sequences (from bottom to top
of the sample).

(figure 7(f )). Here we need to average the quantity of interest
along the sedimentation path. For example, to obtain the
packing fraction of colloids in the sedimented sample we use

〈ρcvc〉 = vc

h

∫ h

0
dzρc(z), (12)

where ρc(z) is the density profile of the colloids as a function
of the vertical coordinate. The density profile can be obtained
using the equation of state ρc(µc) and the values of µc along
the sedimentation path.

A quantitative comparison with the experimental
observations in [21] cannot be performed, because of variation
in the height of the experimental samples, possibly due to
solvent evaporation. However, the same stacking sequences
are present in both experiments and theory. Our theory predicts
also the same stacking sequences than those in [14] in which the
sedimentation of the same mixture is considered by analyzing
osmotic equilibrium conditions in the mixture.

3.7. Topologies of the bulk phase diagrams

As the sedimentation paths are described by straight lines
in the chemical potential representation of the bulk phase
diagram, this representation is particularly suited for the
analysis of sedimentation-diffusion equilibrium. However,
in the literature, the chemical potential is certainly not the
most commonly used thermodynamic variable to represent the
bulk phase diagram. Other representations of the bulk phase
diagram, such as via the composition, x, pressure, p, plane are
by far more popular. In order to connect both representations,
x, p and µ1, µ2, we plot in figure 9 a catalog of schematic
bulk phase diagrams in both variable sets. Here we define x as
the molar fraction of the species 1 and, in colloidal mixtures,
p is the osmotic pressure. The topological correspondence
between both planes is accurate (i.e. number of binodals,
ending points, asymptotic behaviour of the binodals...), but
certain details, such as the precise curvature of the binodals,
depend on the system under consideration and are, therefore,
approximate.

The simplest phase diagram in the x, p plane (not shown)
is a closed loop of immiscibility, which corresponds to a

10



J. Phys.: Condens. Matter 27 (2015) 194115 D de las Heras and M Schmidt

(a)

(b)

(c)

(d) (h)

(g)

(f)

(e)

Figure 9. (a)–(h) Schematic bulk phase diagrams in the composition x, pressure p plane (left) and their corresponding bulk phase diagrams
in the plane of chemical potentials µ1, µ2 (right). x is the molar fraction of species 1. The shadow areas represent two-phase regions. Solid
lines are bulk binodals. Empty circles denote critical points. Filled triangles and horizontal dotted lines indicate triple points in the µ1, µ2

and x, p representations, respectively.

binodal that ends at two critical points in the plane of chemical
potentials, similar to the case presented above. Closed loops
of immiscibility in mixtures are infrequent, but they have been
predicted in e.g. mixtures of hard squares [22] and patchy
colloids [23].

In figure 9(a) we show results for a mixture in which
both pure components undergo a phase transition. Both
transitions extend into the mixed system within a finite range
of composition and then end at critical points. In (b) each pure
component again undergoes a transition, but these transitions
are connected in the mixture. The stacking diagram of a
mixture with a similar phase diagram (mixture of hard platelets
with different radius) was analysed in [13]. In (c) only species
1 has a transition that extends as a large demixing region at

high pressure/chemical potentials. In (d) species 1 undergoes
a transition between phases A and B. Species 2 has a A-C
transition. Both transitions collapse in a A-B-C triple point.
At pressure/chemical potentials above the triple point there
is a demixing region between phases B and C. A variant of
this phase diagram is depicted in (e). Here the species 1
undergoes both transitions A-B and B-C. In (f ) and (g) we
introduce a new element, a demixing region bounded by a
lower critical point. Finally in (h) we show a complex phase
diagram with 6 stable phases in bulk. The stacking diagram of
a similar system has been studied in section 3.4. This catalog
demonstrates that despite its slight unfamiliarity, the plane of
chemical potentials is a suitable means to represent common
bulk phase phenomenology.
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4. Discussion

We have developed a theory of the phenomenology of stacking
sequences that occur in sedimentation-diffusion equilibrium
of colloidal mixtures, based on a local density approximation
and the concept of the sedimentation path, which is a straight
line in the plane of chemical potentials. An interface in the
sample corresponds to a crossing between the path and a
binodal in the chemical potential representation of the bulk
phase diagram. Hence a direct relation is established between
the sedimentation path and the observed stacking sequence in
the vessel. We have grouped all possible stacking sequences
in a well-defined mathematical object, the stacking diagram.
Three elements form the boundaries between different stacking
sequences in the stacking diagram: (i) sedimentation binodals,
(ii) terminal lines, and (iii) asymptotic terminal lines. The
bulk phase diagram and the stacking diagram are linked
via a mathematical correspondence based on the Legendre
transform.

As the gravitational length is in general much larger
than all relevant correlation lengths in the system, we
expect our ‘local density approximation’ approach to be very
accurate in general. Actually, it has been shown to be
an excellent approximation in mixtures of colloidal platelets
and spheres [8]. Nevertheless, the LDA treatment might be
inaccurate in presence of long range pair interactions, and will
fail if the largest correlation length in the system is comparable
to the shortest gravitational length of the components of the
mixture. In addition, effects such as wetting at the upper and
lower interfaces of the vessel, and interactions between two
consecutive interfaces of the stacking sequence, go beyond
the local density approximation. These nonlocal effects
will enrich and modify the stacking diagram by e.g. the
the occurrence of new boundaries due to e.g. prewetting
transitions.

As we have shown, finite size effects enrich also the
stacking diagram. We have considered an example of stacking
diagram for finite heights in a mixture of polymers and colloids.
In this case the sedimentation path is a line segment and as
a result of its finite length new stacking sequences appear
(compared to the case of an infinite sample). The height of the
sample determines the length of the path. Hence, the container
height is a key variable that should be carefully controlled in
experiments.

Another key parameter is the ratio between the buoyant
masses of both species (slope of the sedimentation path). This
ratio might be varied by changing the solvent of the mixture.
Although we have focused on colloidal mixtures, the theory is
also valid for molecular mixtures. The gravitational length in
molecular systems is several orders of magnitude higher than
that in colloidal systems. Then, our theory might be relevant
to understand the structure of geological deposits [24, 25].

In multicomponent systems the sedimentation paths
remain straight lines in the phase space of chemical potentials.
Hence, the theory can be extended to study the stacking
diagrams in systems with more than two components. The
sedimentation of multicomponent mixtures has been recently
investigated in [9, 26].

We have considered here the case where gravity is the
only external potential. However, one can image mixtures
with additional external potentials [27] or pseudo-external
potentials, i.e. a potential self generated by the components of
the mixture. Examples are colloids in presence of external
electric fields [28, 29], charged colloids [2, 30], and dense
polymer solutions [31]. If the additional external potential
is linear in z, then the theory remains valid with a redefinition
of the intersection a and the slope s of the sedimentation path.
If the additional external potential is not linear in z, then the
sedimentation path is, in general, no longer a straight line in
the plane of chemical potentials. Our concept of identifying
the crossings between such a curved sedimentation path and
the characteristics of the bulk phase diagram remain valid,
however the (geometric) generalization from straight to curved
paths needs to be performed.

The study of sedimentation-diffusion equilibrium using
computer simulations is a time consuming task because gravity
affects the system at scales much larger than the particle
length. Our approach can be relevant in computer simulations
because only the bulk phase diagram of the mixture needs to
be simulated in order to predict the sedimentation-diffusion
equilibrium regime.
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