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Theoretical approaches to nonequilibrium many-body dynamics generally rest upon an adiabatic
assumption, whereby the true dynamics is represented as a sequence of equilibrium states. Going beyond
this simple approximation is a notoriously difficult problem. For the case of classical Brownian many-body
dynamics, we present a simulation method that allows us to isolate and precisely evaluate superadiabatic
correlations and the resulting forces. Application of the method to a system of one-dimensional hard
particles reveals the importance for the dynamics, as well as the complexity, of these nontrivial out-of-
equilibrium contributions. Our findings help clarify the status of dynamical density functional theory and
provide a rational basis for the development of improved theories.
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Adiabatic changes to a dynamical system proceed infi-
nitely slowly and regularly, allowing the system to con-
tinuously adapt its configuration and remain close to
equilibrium. When changes occur at finite rates, as is always
the case in practice, the dynamics can often be reasonably
approximated by an adiabatic process. This approach has
proven very fruitful in treating quantum mechanical prob-
lems, from the early work of Ehrenfest [1], Dirac [2], Born
and Fock [3], to Berry’s discovery of the geometric phase
[4]. In this context, a process may be treated adiabatically
when the time scale of the imposed change is much larger
than the intrinsic time scale of the system.
Out-of-equilibrium systems in classical statistical

mechanics can also be treated using adiabatic approxima-
tions. In contrast to the quantum case, where one typically
deals with the full probability distribution, adiabatic
approximations in classical many-body systems are applied
on the coarse-grained level of the correlation functions. A
well-known theory of this type is the dynamical density
functional theory (DDFT) [5–7], which predicts the time
evolution of the one-body density of Brownian particles.
Within this approach one makes the assumption that the
nonequilibrium pair correlations can at any time be approxi-
mated by those of a fictitious equilibrium system, whose
density is given by the instantaneous density of the non-
equilibrium system [8]. This is equivalent to assuming that
the time scale on which the density changes is slow
compared to the relaxation time of the pair correlations.
DDFT provides a simple and implementable tool for

investigating qualitative features of the density evolution.
Recent applications include the study of active colloidal
suspensions [9], the modeling of multiple time scales
during glass formation [10], quasicrystalline order and a
crystal-liquid state in a soft-core fluid [11], traveling
crystals in active systems [12], and shock waves in a
capillary collapse of colloids [13]. The theory has also

recently been generalized to address hydrodynamics [14].
Despite these successes, in many situations the DDFT
approach either becomes unreliable or breaks down com-
pletely. In addition to the well-known overestimation of
relaxation rates [6,7,15], the theory is qualitatively wrong
for either strongly confined systems or high density states
around the glass transition.
In this Letter, we address the fundamental limitations

of the adiabatic approximation for describing the non-
equilibrium dynamics of Brownian many-body systems.
We present a general computer simulation method which
enables the superadiabatic contribution to the particle
motion to be isolated and analyzed in detail. As an
application, the method is used to study a simple system
of confined one-dimensional hard particles.
We consider a system of N interacting Brownian

particles. The microscopic motion of particle i with
position riðtÞ is described by a stochastic differential
(Langevin) equation

ξ
driðtÞ
dt

¼ −∇iUðrN; tÞ þ XiðtÞ; ð1Þ

where ξ is the friction coefficient, UðrN; tÞ is the potential
energy of configuration rN , XiðtÞ is a Gaussian random
force, and ∇i indicates the partial derivative with respect to
the position of particle i.
The evolution of the probability distribution PðrN; tÞ is

given by the Smoluchowski equation [16]

ξ
∂PðrN; tÞ

∂t ¼
XN
i¼1

∇i · ½kBT∇i þ∇iUðrN; tÞ�PðrN; tÞ;

ð2Þ

where kB is the Boltzmann constant and T is the temper-
ature. We restrict our discussion to potential energies of the
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form UðrN;tÞ¼P
iVextðriÞþ

P
i<jϕðjri−rjjÞ, where Vext

and ϕ are the external and pair potentials, respectively.
Integrating the probability distribution yields the one-body
density

ρð1Þðr1; tÞ ¼ N
Z

dr2…
Z

drNPðrN; tÞ; ð3Þ

and two-body density

ρð2Þðr1; r2; tÞ ¼ NðN − 1Þ
Z

dr3…
Z

drNPðrN; tÞ; ð4Þ

which provide a coarse-grained description of the instanta-
neous microstructure [17].
Integration of Eq. (2) over all but one of the coordinates

yields a continuity equation for the density [18]

∂ρð1Þðr; tÞ
∂t ¼ −∇ · Jðr; tÞ: ð5Þ

The one-body current is related to the total force according
to Jðr; tÞ ¼ ξ−1ρð1Þðr; tÞFðr; tÞ, where

Fðr; tÞ ¼ −kBT∇ ln (ρð1Þðr; tÞ) −∇Vextðr; tÞ þ Fintðr; tÞ:
ð6Þ

The internal force acting on the density field at point r
arises from pair interactions and is defined by Fintðr; tÞ ¼
Iðr; tÞ=ρð1Þðr; tÞ, with the exact force integral given by

Iðr; tÞ ¼ −
Z

dr0ρð2Þðr; r0; tÞ∇0ϕðjr − r0jÞ: ð7Þ

Equations (6) and (7) represent the first in a nonequilibrium
hierarchy of equations for the n-point density functions
[17]. Evaluation of the nonequilibrium pair density and the
force integral (7) constitutes the primary aim of this Letter.
In order to isolate the physical processes of interest we

split the force integral into adiabatic and superadiabatic
contributions, Iðr; tÞ ¼ Iadðr; tÞ þ Isadðr; tÞ, where

Iadðr; tÞ ¼ −
Z

dr0ρð2Þad ðr; r0; tÞ∇0ϕðjr − r0jÞ; ð8Þ

Isadðr; tÞ ¼ −
Z

dr0ρð2Þsadðr; r0; tÞ∇0ϕðjr − r0jÞ: ð9Þ

The adiabatic two-body density ρð2Þad ðr; r0; tÞ used to evalu-
ate Eq. (8) is that of an equilibrium system with one-body
density ρð1Þðr; tÞ. The DDFT employs equilibrium methods
to obtain an approximation to Eq. (8) and thus implicitly
uses the approximation Iðr; tÞ ¼ Iadðr; tÞ.
Here we propose a simple and general computational

scheme to analyze the superadiabatic contribution to
the dynamics. The method is implemented as follows:
(i) Sample the two-body density ρð2Þðr; r0; tsÞ and one-body

density ρð1Þðr; tsÞ with nonequilibrium computer simula-
tions at a time t ¼ ts. (ii) Calculate the force integral Iðr; tsÞ
via Eq. (7). (iii) Find a fictitious external potential Vadðr; tsÞ
(henceforth referred to as the adiabatic potential) that
generates in an equilibrium simulation the instantaneous

nonequilibrium density ρð1Þðr; tsÞ≡ ρð1Þad ðr; tsÞ. (iv) Perform
an equilibrium simulation with the newly found adiabatic

potential and sample ρð2Þad ðr; r0; tsÞ via Eq. (4) with the
adiabatic probability distribution PadðrNÞ that possesses
the equilibrium form, and is hence defined as the (nor-
malized) Boltzmann factor of the internal interactions and
the external potential energy Vadðr; tsÞ. (v) Calculate the
force integral Iadðr; tsÞ using Eq. (8). (vi) Identify the
superadiabatic force integral by computing the differ-
ence Isadðr; tsÞ ¼ Iðr; tsÞ − Iadðr; tsÞ.
To provide a concrete implementation of this scheme, we

consider a one-dimensional system [schematically shown
in Fig. 1(a)] of N ¼ 10 quasihard particles of length σ
confined between quasihard walls with separation distance
Lx. Our choice to investigate hard particles is motivated
by the fact that this system, although simple, is sufficient
to demonstrate both the utility of our computational
approach and the limitations of the adiabatic approxima-
tion. Higher dimensional models can also be addressed
with our method.

(a)

(b) (c)

FIG. 1 (color online). (a) Schematic representation of a system
of 10 hard particles confined between hard walls. (b) Density
profiles calculated from BD simulations (black-solid line) and
DDFT (red-dashed line) at reduced time t� ¼ ts=τB ¼ 0.5 (top),
and 1.0 (bottom) for a system initialized in a parabolic trap.
(c) Density profiles calculated from BD simulations (black-solid
line) and DDFT (red-dashed line) at reduced time t� ¼ 0.1 (top),
and 0.2 (bottom) for a system initialized in a crystal structure (for
a comparison of the adiabatic forces see the Supplemental
Material [19]).
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The pair interaction between particles at distance r is
ϕðrÞ=kBT ¼ ðσ=rÞ42 for r < σ and vanishes otherwise. The
particle-wall interaction potential is VextðxÞ=kBT¼ðσ=xÞ42
if the wall-particle distance x < σ=2 and vanishes other-
wise. The exponent 42 has been chosen because it provides
a good balance between the need for a steep repulsive
potential, which represents the hard core of the particles,
and computation efficiency.
In order to explore some typical nonequilibrium situa-

tions, we initialize the system in two distinct states. First,
the system is equilibrated in a parabolic trap, V ¼ αx2, with
α ¼ 10kBT=σ2, which is then suddenly removed at time
t ¼ teq. Second, we initialize the particles in a “crystal”
structure; i.e., the particles are placed on an ordered lattice
between the two walls. In both cases we follow the free
relaxation of the system for t > teq.
We first compare the time evolution of the density

obtained from a Brownian dynamics (BD) simulation
[20,21] with that predicted by DDFT (see the
Supplemental Material for details of the DDFT implemen-
tation [19]), for a system with a reduced average density
ρσ ¼ 0.4. Figures 1(b) and 1(c) show the density profiles
obtained at two different times for parabolic trap and crystal
initial conditions, respectively. Before removal of the trap,
we allow an equilibration time teq ¼ 5τB, with Brownian
time τB ¼ σ2ξ=ðkBTÞ, and then follow the evolution of the
system until time t − teq ¼ ts (teq ¼ 0 for crystal initial
conditions).
Although BD and DDFT show a similar trend, it is clear

that the damping of the oscillations proceeds more slowly
in the simulation. This well-known discrepancy [6,7] is
commonly attributed to ensemble differences: canonical in
BD and grand canonical in DDFT. (Note that the develop-
ment of canonical equilibrium DFT is a question of current
research [22,23], and that a canonical version of DDFT
is not available at present.) However, in the limit ts → ∞
both profiles become very similar (see the Supplemental
Material [19]) indicating that for this number of particles
ensemble differences do not account for the discrepancy
between BD and DDFT. We have performed the same
analysis up to N ¼ 30 and found similar discrepancies.
As we will demonstrate below, the failure of DDFT in
adequately describing the dynamics lies in the neglect of
superadiabatic forces.
To implement our numerical scheme we discretized the

box length Lx into bins of width dx ¼ 0.0025σ. After

equilibration, both ρð1ÞBDðxl; tsÞ and ρð2ÞBDðxl; xk; tsÞ are
sampled at time ts by averaging overM ¼ 106 independent
trajectories, where l, k are indices that run over all discrete
bins. The search for the adiabatic potential is then carried out
using a series of canonical Monte Carlo (MC) simulations
[24]: We discretize VadðxlÞ, initializing it to an arbitrary
function [25], and perform a MC simulation with this
external potential. Following 1000 equilibration steps, the
one-body density is sampled for 1000 steps. The computed

ρð1ÞðxlÞ is then compared in each bin with the desired

target density ρð1ÞBDðxlÞ. If ρð1ÞðxlÞ > ρð1ÞBDðxlÞ then the poten-
tial in bin l is increased, otherwise it is decreased. This

process is iterated until jρð1ÞBDðxl; tsÞ − ρð1ÞðxlÞj < 0.005σ−1.
The adiabatic potential thus obtained is then used in a final,
longer MC simulation: After 105 equilibration steps the
(adiabatic) one- and two-body densities are sampled for 105

steps and the superadiabatic force is computed using (9).
Figure 2(a) shows the equilibrium density at ts ¼ 0.5τb

for the system initialized in a parabolic trap with average
density ρσ ¼ 0.4. Clearly, the particles have not reached the
walls located at x=σ ¼ 0 and x=σ ¼ 25. Figure 2(b)
compares the current from BD (see the Supplemental
Material for simulation details [19]) with that obtained
by using the simulated ρð1Þðr; tÞ as input to the DDFT. The
DDFT current is larger in magnitude than the simulated
one. This is compatible with various observations that
DDFT dynamics are faster than in simulation.
The expanding set of particles is characterized by a pair

force IðxÞ shown in Fig. 2(c), which corresponds to the pair
force acting at position x. The overall slope of the curve
indicates that the system experiences a force pushing the
density outwards towards the walls. On top of this overall
expansion force is superposed a local oscillatory structure
indicating that each particle (except the first and last) is
subject to a confining force arising from the cage of nearest
neighbors.
Figure 2(d) shows the adiabatic contribution Iad. Not

only is the functional form very similar to that of I, but the

(a)

(b)

(c)

(d)

(e)

FIG. 2 (color online). System relaxing following release from a
parabolic trap (ts ¼ 0.5τB). (a) One-body density ρð1Þðx; tsÞ.
(b) Total current JðxÞ from BD (continuous line) and DDFT
(dotted line). (c) Total force integral I�ðxÞ ¼ IðxÞσ2=kBT.
(d) Adiabatic force I�adðxÞ ¼ IadðxÞσ2=kBT. (e) Superadiabatic
force I�sadðxÞ ¼ IsadðxÞσ2=kBT. The vertical dashed lines serve as
a guide for the eye.
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overall slope is captured almost completely by Iad. The
superadiabatic contribution, Isad, shown in Fig. 2(e) is
roughly the same magnitude as Iad and has a similar global
slope. The total, adiabatic and superadiabatic forces all
oscillate in phase, suggesting that the influence of the
superadiabatic contribution to the dynamics could be
approximated by a global scaling of Iad.
However, the picture becomes more complex when

considering a crystal initial state. Figure 3(a) shows the
density profile at ts ¼ 0.2τb for the system with average
density ρσ ¼ 0.4. For this relatively short time, the equi-
distant density peaks are rather symmetric about their initial
positions. As shown in Fig. 3(b), the magnitude of the
simulated current is also smaller than that from DDFT for
this initial condition.
The full force integral I, shown in Fig. 3(c), has no global

slope, as there is no tendency for the system to expand.
Moreover, the oscillatory structure of the peaks in I is
precisely what one would expect as a result of confinement
by repulsive neighboring particles. Most interestingly, the
adiabatic contribution [Fig. 3(d)] oscillates out of phase
with respect to I; the adiabatic approximation is qualita-
tively wrong leading to a large superadiabatic correction
[Fig. 3(e)]. The adiabatic forces acting on the density field
erroneously predict that repulsive interactions with neigh-
bors should enhance the relaxation rate. Note that the ideal
diffusion creates the primary contribution. Any interaction
contributions generally subtract from this and tend to slow
down the dynamics. The subtraction that the adiabatic piece
generates is, however, too small or even has the wrong sign.
This explains, e.g., that in Fig. 2 I� must be larger in
magnitude than I�ad. It is thus clear that superadiabatic
forces cannot, in general, be accounted for by rescaling the
adiabatic forces, but rather represent a distinct additive

contribution, which is essential to recover the correct
physical behavior of the system. This finding is consistent
with the recently developed power functional theory [26],
which is an exact generalization of equilibrium density
functional theory to nonequilibrium Brownian dynamics.
Within the power functional approach the superadiabatic
forces are generated by an additive contribution to the
power dissipation functional.
The unexpected behavior of the adiabatic force can be

elucidated by a systematic investigation of the system with
crystal initial conditions at various densities. The total,
adiabatic and superadiabatic forces are shown in Fig. 4 at
different densities. For the highest value considered, ρσ ¼
0.67 [Fig. 4(a)], the adiabatic force integral oscillates in
phase with the total force integral. However, as the density
is decreased we find very different behavior. The functional
form of the forces at density ρσ ¼ 0.5 [Fig. 4(b)] is very
similar to the one shown in Fig. 3(d) for ρσ ¼ 0.4; i.e., the
adiabatic force oscillates out of phase with respect to the
total pair force. We can thus conclude that the behavior
of the adiabatic force and consequently the extent and
importance of the superadiabatic contribution depend
nontrivially on the average distance between the particles.
(The time evolution of the superadiabatic force is analyzed
briefly in the Supplemental Material [19].) The out-of-
phase behavior at low density can be elucidated by
analyzing the forces at density ρσ ¼ 0.25 [Fig. 4(c)].
Here, the total force vanishes, indicating that no pair

(a)

(b)

(c)

(d)

(e)

FIG. 3 (color online). Same as Fig. 2 but for the system
initialized in a crystal state and sampled at time ts ¼ 0.2τB.

(a)

(b)

(c)

FIG. 4 (color online). Total I�ðxÞ ¼ IðxÞσ2=kBT (thick line),
adiabatic I�adðxÞ ¼ IadðxÞσ2=kBT (dashed line), and superadia-
batic I�sadðxÞ ¼ IsadðxÞσ2=kBT (thin line) force integrals at differ-
ent densities for the system initialized in a crystal state and
sampled at time ts ¼ 0.2τB. The vertical dashed lines serve as a
guide for the eye. (a) ρσ ¼ 0.25 (Lx=σ ¼ 40). (b) ρσ ¼ 0.5
(Lx=σ ¼ 20). (c) ρσ ¼ 0.67 (Lx=σ ¼ 15).
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interactions have occurred at the sampling time.
Nevertheless, the adiabatic force is nonzero and, instead
of a confining force, we find a force that moves particles
away from the peak centers. Since the adiabatic force is an
equilibrium contribution, it includes all possible configu-
rations for a given external potential. Among those are
configurations with two particles inside the same potential
well, which give rise to an erroneous repulsive force. Since
the total force vanishes, the superadiabatic and adiabatic
contributions are exactly opposite. At higher densities, the
density peaks are narrower, configurations with two par-
ticles in the same peak are less likely to occur and the
adiabatic force has only confining contributions due to
interactions with neighbor peaks.
In conclusion we have developed a general method for

estimating superadiabatic forces in a system of interacting
Brownian particles. We have applied the method to con-
fined hard particles in one dimension and thus revealed
two important features of the superadiabatic force: (i) It is
of the same magnitude as the adiabatic forces and thus
cannot be regarded as a small correction; (ii) the behavior
depends on a nontrivial way on the average distance
between the particles. These findings suggest that the
validity of the adiabatic approximation depends sensitively
upon the particular dynamic path taken by the system as it
relaxes through the space of density functions.
Although we have applied our method to BD simulation

data, we note that it could, in principle, also be used to
determine the superadiabatic contribution in colloidal
experiments. An adiabatic external field could be obtained,
for example, by application of a light field [27].
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