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Domain walls in two-dimensional nematics
confined in a small circular cavity

Daniel de las Heras*a and Enrique Velascob

Using Monte Carlo simulation, we study a fluid of two-dimensional hard rods inside a small circular cavity

bounded by a hard wall, from the dilute regime to the high-density, layering regime. Both planar and

homeotropic anchoring of the nematic director can be induced at the walls through a free-energy

penalty. The circular geometry creates frustration in the nematic phase and a polar-symmetry

configuration with a distorted director field plus two +1/2 disclinations is created. At higher densities, a

quasi-uniform structure is observed with a (minimal) director distortion which is relaxed via the

formation of orientational domain walls. This novel structure is not predicted by elasticity theory and is

similar to the step-like structures observed in three-dimensional hybrid slit pores. We speculate that the

formation of domain walls is a general mechanism to relax elastic stresses under the conditions of

strong surface anchoring and severe spatial confinement.
Fig. 1 Schematic of the phases obtained in the circular cavity as the
I. Introduction

In adsorbed nematics, surfaces oen determine the favoured
director orientation, which then propagates into the bulk.1

When a nematic is subject to orientations propagating from
different surfaces, elasticity theory predicts a distorted director
conguration, with an associated elastic free energy. Very oen
conicting surface orientations frustrate the director in
restricted geometries and disclinations are generated. Dis-
clinations can be generated by the curvature alone,2 for example
by placing a two-dimensional (2D) nematic on a nite but
unbounded surface such as a spherical surface.3–5 The dimen-
sionality of the space is also important since it forces the
possible topology and limits the type of defects that can form.

Consider a 2D nematic made of rod-like particles inside a
small (of a size a few times the particle length) circular cavity.
When the density is increased from a dilute state, the bulk
isotropic–nematic transition6–9 induces some kind of orienta-
tional ordering in the cavity. However, due to the surface, the
nematic director is unable to adopt a defect-free uniform
conguration, and a global topological charge +1 (ref. 10) arises
in the cavity: either as a central +1 disclination, or as two dia-
metrically opposed +1/2 disclinations (on the surface or at a
distance from it). Thus the uid optimises the surface free
energy at the cost of creating two disclinations and a distorted
director eld (which incurs an elastic free energy). This effect
has been observed in Monte Carlo (MC) simulations.5 For weak
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surface anchoring there is an alternative scenario: the directormay
not follow the favoured surface orientation and a quasi-uniform,
defect-free conguration with little elastic free energy may arise in
the cavity. A uniform phase has been obtained in vibrated
monolayers of granular rods.11 Interesting phase diagrams result
as the cavity radius and the uid density are changed, as exem-
plied by recent density-functional calculations.12–14

In this paper we use Monte Carlo simulation to analyse this
system, using hard rectangles of length-to-width ratio L/s as a
particle model and a circular cavity of radius R that imposes
hard or overlap forces on the particles. Both planar (tangential)
and homeotropic (normal) anchorings are studied. In both
cases we observe the formation of 1D domain walls when the
cavity radius is small. The scenario is schematically depicted in
Fig. 1 (for the sake of illustration, only the planar case is
depicted): an isotropic phase, I, at low density (containing a thin
nematic lm in contact with the wall), Fig. 1(a), followed, at
higher densities, by a nematic phase with two +1/2 disclinations
density is increased in the case of a wall imposing planar surface
alignment. The continuous thin line denotes the director field. (a) Low
density: isotropic phase (I) with a film of nematic fluid adsorbed on the
surface. (b) Intermediate density: polar phase (N2) containing two
disclinations (in the case depicted disclinations are at the wall). (c) High
density: quasi-uniform (Nu) phase with two domain walls (represented
by dashed lines).
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called polar conguration, N2, see Fig. 1(b). When the density
increases further the polar conguration is no longer stable, and
may transform into a structure with a quasi-uniform director
conguration, phase Nu in Fig. 1(c). Depending on the surface
conditions, cavity radius and particle aspect ratio, theNu phasemay
be preempted by the formation of layered (smectic-like) structures.

Our study contains two novel features. (i) In contrast with
previous studies, which focus solely on the nematic phase and
the conguration of disclinations, the whole density range, from
dilute to near close-packing, is explored here. (ii) The peculiar
structure of the Nu phase: the incorrect surface alignment asso-
ciated with a uniform director is here observed to be relaxed by
the formation of domain walls, i.e. one-dimensional interfaces
across which the director rotates abruptly by approximately 90�;
this is represented by the dashed lines in Fig. 1(c). These struc-
tures are similar to the step-like defects observed in three-
dimensional nematics inside hybrid planar slit pores15–20 or near
half-integer disclinations in cylindrical pores,21 and may be a
universal feature in nematics subject to high frustration and
strong anchoring under the conditions of severe connement. In
our results, planar and homeotropic anchoring conditions
behave similarly except for trivial but important differences.
Although the calculation of a complete phase diagram including
the cavity radius, density and particle aspect ratio is beyond our
present capabilities, we give general trends as to how the equi-
librium phase depends on these parameters.
bvext

�
r; û

�
¼

(
N;

� � at least one corner outside cavity ðplanarÞ
� centre of mass outside cavity ðhomeotropicÞ

�
0; otherwise;

(1)
Our theoretical work is mainly inspired by recent experiments
on vibrated quasi-monolayers made of granular rods that interact
through approximately overlap forces (hard interactions). Nematic
ordering is observed in these uids.11,22–25 Granular materials are
non-thermal uids and therefore do not follow equilibrium
statistical mechanics. In particular, they ow and diffuse anoma-
lously.26,27 However, they can also form steady-state textures that
resemble liquid-crystalline states. In this context, it would be
interesting to check whether the MC simulation on hard particle
models can be useful to obtain basic trends as to the type of
patterns, dependence on the packing fraction and the size of the
conning cavity, etc. The arrangement of rods in a 2D conning
cavity has also been investigated in connection with themodelling
of actin laments in the cell cytoplasm.28 Self-organised patterns
of these laments have been observed in various quasi-2D geom-
etries and result from the combined packing and geometrical
constraints. Simulation studies such as the present one could also
provide mechanisms to explain this and other experiments on
conned quasi-two-dimensional nematics.29

In Section II we dene the particle model, the simulation
method and provide some details on the analysis. Results are
presented in Section III, and a short discussion and the
conclusions are given in Section IV.
This journal is © The Royal Society of Chemistry 2014
II. Model and simulation method

The particle model we use is the hard-rectangle (HR) model,
consisting of particles of length-to-width ratio L/s ¼ 16 or 40
that interact through overlap interactions. The conguration of
a particle is dened by (r, û), respectively the position vector of
the centre of the particle and the unit vector giving the orien-
tation of the long particle axis. A collection of N such particles is
placed in a circular cavity of radius R. We dene the packing
fraction f of the system as the ratio of area covered by rectangles
and total area A of the cavity. Thus f¼ NLs/A¼ r0Ls, where r0¼
N/A is the mean density.

For such large length-to-width ratios a uid of HR undergoes
a phase transition from an I phase to a nematic (N) phase at
rather low densities.30–35 The bulk transition is continuous and
probably of the Kosterlitz–Thouless type; this detail is irrelevant
here since, due to the completely conned geometry, there can
be no true phase transition in the circular cavity and one expects
a possibly abrupt but in any case a gradual change from the I
phase to the N phase.

The effect of the cavity wall on the particles is represented via
an external potential vext(r, û). In all cases this is a hard
potential but, depending on the type of surface anchoring
condition wished (either homeotropic or planar), the potential
can be chosen to act on the particle centres of mass or on the
whole particle – all four corners of the particle. Specically,
where b ¼ 1/kT, with k Boltzmann's constant and T the
temperature. A hard wall acting on the whole particle promotes
planar ordering. However, if the condition is on the particle's
centers of mass, it is homeotropic anchoring that is promoted.
This was shown by MC (ref. 5) and density-functional studies,12

and has also been conrmed in uids of hard discorectangles
conned in 2D circular cavities or in uids of rods conned in
slit pores in 3D.36–38 Since a single particle close to a wall may
have any orientation in this type of condition, one infers that
homeotropic anchoring results from the collective effect of all
particles. By contrast, a hard wall over the whole particle induces
planar anchoring. In this case anchoring is not the result of a
collective effect since a single particle sufficiently close to the
wall is forced to adopt an orientation parallel to the wall.

The simulation method is described as follows. We started at
low density with a few particles inside the cavity. Aer equili-
brating the system using the standard Metropolis algorithm on
particle positions and orientations, a few particles are added
and the uid is equilibrated again. The number of particles
added varied between 1 and 20, resulting in an increase in the
packing fraction of �1 to 10 � 10�3 (depending on the aspect
ratio and the cavity radius). This process was repeated until a
high density was reached.
Soft Matter, 2014, 10, 1758–1766 | 1759
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For the insertion process we rst chose one particle at
random and created a replica with the same orientation but
with the long axis displaced by �D. Then we performed a few
thousand rotations and displacements on the new particle. The
addition of one particle, especially when the density is high,
may lead to an overlap; in that case we chose another particle to
create the replica and a new attempt was made until the
insertion was completed successfully. The simulation ended
when the desired density was reached or if the addition of new
particles is no longer possible. As usual, a Monte Carlo step
(MCS) is dened as an attempt to individually move and rotate
all particles in the system. We performed 5 to 15 � 105 MCS for
each N. The acceptance probability was set to about 0.2, and
depended on the maximum displacement Drmax and the
maximum rotation Dfmax each particle is allowed to perform in
one MCS. Both, Drmax and Dfmax, were adjusted to obtain the
desired acceptance probability every time we increased the
number of particles.

To characterise the uid structure in the cavity, three local
elds are dened: (i) a local density r(r) in terms of a local
packing fraction f(r) ¼ r(r)Ls; where r ¼ (x, y) is the position
vector of a particle centre of mass. (ii) A local order tensor, Qij(r),
dened as Qij ¼ h2ûiûj � diji, where h.i denotes a canonical
average, û ¼ (cos 4, sin 4) is the unit vector pointing along the
particle axis, and 4 is the angle with respect to the x axis. The
order tensor can be diagonalised, and the largest eigenvalue
Q(r) is taken as the local order parameter (the other eigenvalue
is negative and with the same absolute value). The x axis of the
frame where Qij is diagonal denes a local tilt angle j(r) with
respect to the laboratory-frame x axis.

All the local quantities, f(r), Q(r) and j(r), were dened, at
each r, as an average of each quantity for all particles over a
circle of radius r ¼ 0.5L and for 2500 different congurations
separated by 50 MCS (all the local elds shown in this paper
were obtained in this way). This number of congurations is
necessary in order to obtain spatially smooth elds. However,
a complication may arise due to the collective rotation of the
particles inside the cavity. As the cavity does not impose a
global director, microstates with the same average order
parameter but distinct global directors are equivalent. Hence,
an ensemble average over these states can articially result in
a state with a lower order parameter. In particular, the
collective rotations of the particles take place more frequently
at low packing fractions, hindering the nematization analysis.
Since the precise location of the transition to the nematic state
is not the goal of our work, we did not attempt to address this
problem.

As shown in Section III the distinct states characterised by
different local nematic elds will arise in the cavity as the
density is increased. Given the completely restricted geometry
and the reduced number of particles in the cavity, abrupt
changes are not expected and only a continuous transition
between the different states can occur in the system. In order
to check this, we have run simulations for selected cavity radii
by rst increasing and then decreasing the number of parti-
cles, looking for possible hysteresis effects. As expected, no
such effects were found in the process and we can be condent
1760 | Soft Matter, 2014, 10, 1758–1766
that the states described in the following section are the
stable ones.
III. Results

An overall picture of the phenomena occurring in the cavity as
the density is increased can be obtained by looking at typical
particle congurations, the local packing fraction and the local
order parameter. In this section we rst present the results
for the planar case, and then for the homeotropic case. In both
cases cavity radii from R ¼ 1.0L to 10L were explored, all for
L/D ¼ 16 and 40.
A. Planar anchoring

Representative results in the case of planar anchoring can be
obtained from the case R ¼ 7.5L and L/D ¼ 40 (the behaviour is
qualitatively the same for the other cavity radii and aspect ratios
analysed). The initial number of particles was N ¼ 250 (corre-
sponding to a packing fraction fx 0.04), and the nal number
of particles was N ¼ 3000 (f x 0.42). The results are shown in
Fig. 2, where each row corresponds to a given packing fraction,
increasing from top to bottom.

At low f (rst row in Fig. 2) the uid is disordered (I phase),
except at a thin lm next to the wall which presents some degree
of planar ordering. As the uid becomes more dense it
undergoes a quasi-transition from the I phase to the N2 phase at
a density close to the bulk transition (the second row in the
gure, for f¼ 0.180, corresponds to a nematic state, i.e. beyond
the bulk transition). This density agrees closely with that pre-
dicted for hard rods in 2D.7,31 Nematization in the case L/D ¼ 16
is qualitatively similar, except that the transition density is more
or less doubled.

Once a nematic uid is established in the cavity, the local
director is subject to frustration due to the geometry. The planar
surface orientation is satised by the particles but, due to the
topological restrictions imposed by the wall, the nematic uid
creates two disclinations of topological charge +1/2 next to the
walls in diametrically opposed regions. This feature manifests
itself in panel b3 through the depleted order parameter at the
disclination cores (by contrast, the local f, panel b2, is not
sensitive because the ordered and disordered phases have the
same density). Two isolated +1/2 disclinations are always more
stable than a single point defect of charge +1 because the free
energy is proportional to the square of the topological charge.
The boundaries could modify this balance, but our results,
already predicted by density-functional calculations,12 indicate
that this is not the case.

Sometimes along the MC chain, congurations with two
extra disclinations are excited (third row in Fig. 2): one of charge
+1/2, close to the surface and forming an equilateral triangle
with the previous two, and another one with charge �1/2 at the
centre (panel c3); these congurations, which still have a total
topological charge of +1, do not appear very oen in the MC
chain since they involve a higher elastic free energy, and anyway
the �1/2 and +1/2 disclinations tend to annihilate each other. A
similar metastable conguration has been observed in
This journal is © The Royal Society of Chemistry 2014



Fig. 2 Cavity with radius R ¼ 7.5L, planar anchoring conditions and particle aspect ratio L/D ¼ 40. Left column: snapshot of particle configu-
rations. Middle column: local packing fraction. Right column: local order parameter. First row: I phase, withN¼ 570 and global packing fraction f

x 0.08. Second row: N2 phase, withN¼ 1270 and fx 0.18. Third row: a probablymetastable phase, withN¼ 1550 and fx 0.22. Fourth row: Nu

phase, with N ¼ 2820 and f x 0.40.
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simulations of hard spherocylinders lying on the surface of a
three-dimensional sphere.5

At higher densities a dramatic structural change can be
observed (fourth row in Fig. 2). As f increases, elastic stresses
become very large because of the strong dependence of elastic
constants, K, with density. As a consequence, a quasi-uniform
director conguration (Nu phase) with little elastic stress is
formed beyond some critical value fc. The director orientation
is not completely uniform. A perfectly uniform director cong-
uration would imply that the planar orientation favoured at the
wall is not completely satised. However, the uid can reduce
the increased surface free-energy implied by a strictly uniform
director eld by creating two uctuating domain walls, panel
d3, that dene two diametrically opposed domains where the
director rotates by 90�. Alternatively, we can view this structure
as a polar structure (stable at lower densities) where the two
point defects are smeared out into a curved one-dimensional
This journal is © The Royal Society of Chemistry 2014
interface. Particles in the two small domains satisfy the surface
orientation. Note that the domain walls behave as the so wall:
particles of the central domain next to the interface are highly
ordered and the density in these regions is increased (panel d2).
Domain walls are seen to behave as highly uctuating
structures.

The value of packing fraction, fc, at which the N2–Nu tran-
sition takes place increases with the cavity radius R. To under-
stand this, let us consider the free energy F of both
congurations, N2 and Nu, with respect to an undistorted
nematic state with free energy F0. Three terms contribute to the
excess free-energy DF ¼ F � F0: domain walls, Fw, elastic
deformations of the director eld, Fe, and disclination cores, Fc.
In the N2 state the director eld is distorted; the free energy
presents a logarithmic dependence with R, i.e. Fe � K(f)
log R,39,40 while the contribution from the two disclinations is
almost constant (assuming the distance between the cores to be
Soft Matter, 2014, 10, 1758–1766 | 1761
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independent of R). In the Nu state director deformations are
negligible in comparison to the other phase, but the presence of
domain walls increases the free energy. Since Fw is proportional
to the length of the domain wall, it should also increase with R,
but faster than Fe. Due to the weaker dependence of Fe with R,
we expect a transition from Nu to N2 when R is increased beyond
some critical values and consequently fc(R) should be an
increasing function of R in view of the density dependence of
the elastic constants K(f). This conclusion is conrmed by our
simulations (not shown).

On further increasing the value of f, the uid may develop
smectic-like layers, reecting the corresponding transition in
Fig. 3 High-density states of particles with L/D ¼ 40 confined in
cavities with planar anchoring and different radii. The global packing
fraction is f x 0.45. Left column: representative snapshots of particle
configurations. Right column: local packing fraction. Cavity radius
increases from top to bottom. First row: R ¼ 1.5L, N ¼ 126. Second
row: R ¼ 2.0L, N ¼ 224. Third row: R ¼ 2.5L, N ¼ 350. Fourth row: R ¼
6.0L, N ¼ 2025.

1762 | Soft Matter, 2014, 10, 1758–1766
bulk. The role played by the cavity radius is especially important
in this regime. To see this, we plot in Fig. 3 the representative
snapshots of the particle congurations (le column) and the
local packing fraction (right column) of particles with an aspect
ratio L/D ¼ 40. In all cases the average packing fraction is f x
0.45 (well above the bulk I–N transition) and the radius
increases from top to bottom: R ¼ 1.5L, 2L, 2.5L and 6L. As
expected, strong commensuration effects arise in the cavity at
high density. For small cavity radii, the particles form well
dened layers (rst three rows in gure), the number of which
depends on the available space. The formation of layers inside
the cavity is the analogue of capillary smectization of a liquid
crystal in slab geometry previously analysed in 3D41–44 and 2D.45

In general, the circular shape of the cavity frustrates the
formation of well-dened layers, but the combined effect of the
shape and the size may frustrate or enhance the formation of
layers. In this system small cavity sizes promote layering: in the
cases shown, the uid remains in a nematic-like Nu state when
R¼ 6L (see panels d1 and d2 of Fig. 3), but for smaller cavities at
the same packing fraction well dened smectic-like layers can
develop.
B. Homeotropic anchoring

In this case the wall acts as a hard wall on the particle centres of
mass. In order to be able to compare with the planar case, we
dene an effective cavity radius, Reff ¼ Rþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ D2
p

=2; and
obtain an effective packing fraction as feff ¼ NLs/(pReff

2). In
contrast with the planar case, for homeotropic anchoring we
observe strong differences with respect to the particle aspect
ratio for a xed cavity radius: the Nu phase is stabilised for
L/D ¼ 16, but the N2–Nu transition is preempted by the forma-
tion of smectic-like layers when L/D ¼ 40 and, as a result, no
quasi-uniform conguration occurs.

Fig. 4 summarises a typical evolution of the congurations as
f is increased when L/D ¼ 16. The low-density conguration
(rst row) is similar to the planar case: a thin (one-particle thick)
lm develops at the wall, now with normal average orientation
of the particles, while the rest disordered.

When the density increases and the nematic order appears
in the whole cavity (second row of Fig. 4), the topological
constraints force the creation of two disclinations of charge
+1/2; this is as in the planar case (second row of Fig. 2). Here
the two defects are not at the wall but a bit separated. This
feature was predicted by density-functional theory12,13 and
results from the effective repulsion of the defect by the wall
combined with the mutual repulsion between the two defects
(in the planar case such a defect–wall repulsion does not exist).
As the density is increased further the two disclinations can be
seen to approach each other (not shown). This behaviour is in
contrast with that predicted by the Onsager-like theory ana-
lysed in ref. 12, according to which the relative distance should
increase with chemical potential (or, equivalently, density).
Again two effects are at work as the density increases: defect–
wall repulsion, which increases due to the strong spatial
ordering near the wall and the incipient stratication from the
wall in the normal direction (panel b2), and defect mutual
This journal is © The Royal Society of Chemistry 2014



Fig. 4 Cavity with radius R ¼ 5.5L, homeotropic anchoring conditions and particle aspect ratio L/D ¼ 16. Left column: snapshot of particle
configurations (circle in black is the actual cavity wall of radius R, while circle in red represents the effective cavity with radius Reff). Middle
column: local packing fraction. Right column: local order parameter. First row: I phase with N ¼ 378 and global effective packing fraction feff x
0.21. Second row: N2 phase with N ¼ 618 and feff x 0.34. Third row: an intermediate state between the N2 and Nu phases, with N ¼ 778 and feff

x 0.43. Fourth row: Nu phase with N ¼ 1022 and feff x 0.56.
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repulsion, which also increases due to the higher elastic
stiffness of the nematic. The poor description of strong density
modulations occurring at high density in Onsager theory may
explain the discrepancy.

The third row in Fig. 4, corresponding to a larger value of
packing fraction, represents an intermediate (probably meta-
stable) stage between the polar state and what appears to be
the stable conguration at high density: the uniform phase, Nu

(fourth row). Here the director alignment in the cavity is more
or less uniform, with little bend-like elastic distortion.
However particles in the rst layer, highly packed in a compact
normal conguration, form a well dened and stable lm
acting as a so wall favouring planar orientation. This results
in a quasi-uniform phase Nu, similar to that found in the case
of planar anchoring at high densities. The resulting congu-
ration contains two extended domain walls separating the rst
This journal is © The Royal Society of Chemistry 2014
layer from the central nematic domain. The N2 / Nu transi-
tion is driven by an anchoring-transition mechanism: the
orientation of particles next to the rst layer changes from
normal (see panel b1 in Fig. 4) to tangential (panel d1) along
opposite arcs spanning �120�; note that in the conguration
of panel c1 the transition has taken place only in one side. As
in the N2 phase, the formation of these domain walls breaks
the rotational symmetry and establishes a direction along
which smectic-like layers can grow at higher densities (see
incipient layering in panel d2).

The stability of the Nu phase was checked by preparing a
conguration of N ¼ 900 rods in a cavity of radius R ¼ 5.5L
containing a central radial disclination of charge +1. During the
MC chain the system rapidly formed a polar phase with two +1/2
disclinations, similar to that depicted in Fig. 4(b1). Then an
anchoring transition took place in half of the cavity, and nally
Soft Matter, 2014, 10, 1758–1766 | 1763



Fig. 5 Cavity with radius R ¼ 5.5L, homeotropic anchoring conditions and particle aspect ratio L/D ¼ 40. Left column: snapshot of the particle
configurations (circle in black is the actual cavity wall of radius R, while circle in red represents the effective cavity with radius Reff). Middle
column: local packing fraction. Right column: local order parameter. First row: I phase withN¼ 385 and average effective packing fraction feffx
0.09. Second row: N2 phase with N ¼ 805 and feff x 0.18. Third row: N2 phase with N ¼ 1325 and feff x 0.29. Fourth row: phase exhibiting
layering in the radial direction, with N ¼ 2445 and feff x 0.54.
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the Nu phase was stabilised and remained unchanged for the
rest of the simulation. This can be taken as strong evidence that
the Nu phase is the truly stable phase.

For particle aspect ratio L/D ¼ 40 and the same cavity radius,
Fig. 5, low-density states are similar to those with aspect ratio
L/D ¼ 16 (rst and second row of Fig. 4). However, the order
parameter close to the surface is signicantly lower than in the
case of planar anchoring (compare panels a3 of Fig. 2 and 5).
The reason is as follows: a single particle at close contact with
the wall has a specic (tangential) alignment when the wall
acts over the whole particle; out-of-tangential alignments lead
to particle–wall overlap and are not allowed, which increases
the order parameter. In contrast, a hard wall acting on the
centers of mass does not induce any favoured orientation on
the particles if the density is sufficiently low.
1764 | Soft Matter, 2014, 10, 1758–1766
As f increases a nematization transition occurs, and a N2

phase is stabilised at intermediate densities (second and third
row of Fig. 5). However, for larger densities, the situation
changes dramatically: the homeotropic anchoring imposed
by the surfaces always propagates to the inner cavity since
the locking mechanism that anchors particles to the rst
layer is much more effective: the normal-to-tangential
anchoring transition never takes place. At higher packing
fractions, feff x 0.54 (fourth row in Fig. 5), a density strati-
cation grows from the surface and particles form well-
dened, concentric layers, the two +1/2 disclinations being
pushed to the central region. The size of the defect cores
(regions where the order parameter vanishes) becomes
signicantly smaller as the density is increased. Therefore,
the absence of the anchoring transition inhibits the
This journal is © The Royal Society of Chemistry 2014



Fig. 6 High density states in a cavity with homeotropic anchoring. Left column: representative particle configurations. Middle column: local
packing fraction. Right column: local order parameter. First row: uniform phase, L/D ¼ 40, R ¼ 2.5L, N ¼ 610, feff x 0.54. Second row: polar
phase, L/D ¼ 16, R ¼ 12.5L, N ¼ 3508, feff x 0.41.
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formation of the Nu phase and the uid instead goes directly
to a smectic-like phase exhibiting concentric layers.

Thus, for R ¼ 5.5L, the high-density states are completely
different depending on the aspect ratio. Anchoring is much
stronger in the case L/D ¼ 40, the anchoring transition does not
take place, and the quasi-uniform conguration is inhibited as
a result. At high densities, smectic-like layers do not grow along
a xed direction but in the radial direction instead.

From this evidence, it may seem that the value of the aspect
ratio L/D determines the type of structure in the cavity as f

increases. This is not the case, and in fact the R/L ratio is a more
important factor. To check this, we have conducted simulations
for both elongations but with very different cavity sizes, R¼ 2.5L
for L/D ¼ 40 and R¼ 12.5L for L/D ¼ 16, Fig. 6. In the rst case a
uniform conguration with domain walls is stabilised; in the
second, no anchoring transition occurs and, as a consequence,
the Nu phase is not stabilised before layering sets in. We
conclude that a large value of R/L favours anchoring and
inhibits the anchoring transition and the formation of the
quasi-uniform phase. In turn, the critical value of the ratio R/L
separating both regimes depends on L/D to some extent.

IV. Discussion and conclusions

In summary, we have observed the formation of domain walls in
2D nematic uids subject to frustration as a result of conne-
ment in small cavities. These structures, not predicted by elas-
ticity theory, are similar to the step-like defects obtained in
model 3D nematics conned in hybrid planar slit pores. At
domain walls the director orientation changes at the molecular
scale, so that the elastic eld becomes singular along extended
interfaces (lines in 2D or surfaces in 3D). In this way the elastic
distortion is greatly relaxed, while the surface orientation is still
optimised. Domain walls were predicted in an analysis of the
This journal is © The Royal Society of Chemistry 2014
neighbourhood of half-integer nematic disclinations, using
Landau-de Gennes theory.21 In this case the domain wall is a way
to avoid a disordered defect core. In hybrid planar slit pores,
where the two facing surfaces favour antagonistic directions, a
domain-wall structure has also been predicted by Landau-de
Gennes theory15 and by density-functional calculations.18

Here we have extended the observation of these domain
walls to real particle simulations of conned nematics in 2D. In
our system and for a xed cavity radius, we have found the
sequence I / N2 / Nu for an increasing packing fraction f.
The packing fraction at which the N2 / Nu transition occurs
strongly depends on cavity radius R. At high density smectic-like
layers are formed in the uid. The Nu phase is a quasi-uniform
phase with little director distortion; this is realised by the
creation of two domain walls which help maintain the favoured
surface orientation in the whole cavity. Homeotropic anchoring
conditions induce the formation of a highly-packed surface
lm, which may drive an anchoring transition to a tangential
orientation and the formation of a large quasi-uniform nematic
domain separated from the rst layer by domain walls. Large
R/L ratios inhibit the anchoring transition and therefore the
stabilisation of the Nu phase, but the critical value of R/L
depends on the aspect ratio L/D. Our results emphasise the
possibility of domain-wall formation in small conned systems
as a mechanism to optimise surface and elastic stresses.

It is interesting to compare our results with other studies.
Dzubiella et al.5 analysed a similar system using MC simulation.
They focused on moderate densities and obtained the N2 phase.
Galanis et al.11 studied vibrated quasi-monolayers of rods in
circular and square geometries, and observed the formation of
nematic patterns. The patterns were seen to be well described
by continuum elastic theory, but the particle congurations of
the experiment seem to exhibit some evidence of domain walls
not contemplated in that work. The formation of two +1/2
Soft Matter, 2014, 10, 1758–1766 | 1765



Soft Matter Paper
disclinations has been also predicted in active matter conned
in cylindrical capillaries46 and circular cavities.47

Recently, liquid-crystalline ordering has been studied in
square cavities using density-functional48 and MC simulation.49

Domain walls can be stabilised in these systems. For some
geometries the formation of domain walls may be a necessary
requirement for the development of conned phases with
spatial order (smectic or columnar) at higher densities.
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