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Two-dimensional nematics possess peculiar properties that have been studied recently using computer simula-
tion and various theoretical models. Here we review our own contribution to the field using density-functional
theory, and present somepreliminary simulation results on confined two-dimensional nematics. First we discuss
the possible stable bulk phases and phase diagrams and the relation between phases and particle geometry. We
then explore the adsorption properties on a single substrate and the confinement effects that arisewhen thefluid
is confined between parallel walls. Next, confinement in circular cavities is presented; this geometry allows us to
measure some properties of the simplest defects that arise in two-dimensional nematics. Finally, preliminary
Monte Carlo simulation results of confined nematics in circular geometry are shown.
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1. Introduction

The nematic phase arises in liquids composed of sufficiently aniso-
tropic particles (molecules, colloidal particles, macroscopic grains)
from the isotropic phase when the density or concentration of parti-
cles (or temperature in thermal liquids) is above (below) some par-
ticular value [1]. In nematics, particles are oriented on average along
a common direction n̂, called the director, but retain their positional
disorder. The gain in orientational order that occurs when the
).

rights reserved.
isotropic phase transforms into the nematic phase proceeds via a
phase transition which, in three dimensions, can be shown to be of
first order, although weak. In this respect, two-dimensional (2D) ne-
matics are peculiar, since symmetry restrictions on the orientational
order parameter, discussedmost conveniently in the context of a Landau
theory, allow for amore general nature of the phase transition: it can be
of either first-order or continuous.

As is the case with three-dimensional nematics, in 2D point de-
fects play an important role. Point defects are points in the plane
where the nematic director field n̂ x; yð Þ is not defined; there exists
an associated region around the point defect where the director
field is highly distorted from the uniform configuration n̂ ¼ const.

http://dx.doi.org/10.1016/j.molliq.2012.08.014
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The density field ρ(x,y) is also affected. Another important aspect of
nematics is that they are very sensitive to the presence of surfaces,
so that they can be used to orient the director in some specific direc-
tions. Finally, the broken rotational symmetry of nematics brings
about an elasticity which, in two dimensions, is restricted to two in-
dependent elastic modes controlled by their corresponding elastic
constants k1 and k3. These three elements, defects, surfaces and elas-
ticity, often compete together to give the final configuration of the ne-
matic, which in many cases is highly nontrivial.

Similar to many other 2D systems, the nematic state in 2D pre-
sents anomalously large thermal fluctuations which result in a highly
fluctuating nematic director. In case the free energy can be described
by a one-elastic-constant, Frank-type elastic model,

Fe ¼
1
2
∫Ad

2r k1 ∇⋅n̂ð Þ2 þ k3 ∇� n̂j j2
n o

¼ 1
2
∫Ad

2rk ∇θj j2; ð1Þ

[where n̂ ¼ cosθ; sinθð Þ], the fluctuations in θ, the director tilt angle, de-
pend on the number of particles N as 〈θ2〉∼ logN, with a vanishing order
parameter in the thermodynamic limit, q1=〈cos2θ〉∼N−kT/2πk, and an
orientational correlation function gn rð Þ ¼ cosnθ rð Þh i∼r−n2kT=2πk which
decays algebraically rather than presenting long-range order. All of
these properties imply that, strictly speaking, the ordered nematic
phase does not exist in the thermodynamic limit, although the depen-
dence is slow and even large nematic samples, or confined nematics,
will be well ordered.

2. Bulk behaviour of hard models

As shown by Onsager [2], overlap or exclusion interactions alone
(hard particles) can explain the formation of the ordered nematic
phase in two and three dimensions. In these systems, one defines par-
ticles with a specific shape, a convex body in the present work, and
associates a potential energy to a pair of particles such that the energy
is zero if particles do not overlap and infinity otherwise. Overlapping
configurations are thus discarded from the partition function, and the
average energy is zero. Order is controlled by the entropy: in the case
of nematics, the orientational entropy, which favours disorder, is
more than compensated by the exclusion configurational entropy,
which increases as particles align along the director. This happens
above some particular particle number density.

Popular hard models for nematic formation in two dimensions are
shown in Fig. 1. They include: hard ellipses (HE), hard discorectangles
(HDR), and hard rectangles (HR). The thermodynamics and phase be-
haviour of these models have been analysed using computer simula-
tions. In the case of the HE and HDR models two liquid phases are
observed: the isotropic phase (I), which exists at low density, and
the uniaxial nematic phase (Nu), at higher densities. In the Nu phase
the continuous rotational symmetry of the I phase is broken and a
HE HDR HR

L

σ

Fig. 1. Popular models for convex hard particles in two dimensions. HE: hard ellipses.
HDR: hard discorectangles. HR: hard rectangles. In the case of HR the length L and
width σ of the particle are indicated. For HDR, the total length of the particle is L+σ.
definite average orientation appears in the fluid. The I–Nu transition
is believed to be continuous and of the Kosterlitz–Thouless type [3].

The HR model contains sharp corners and is close to being non-
convex. This shape favours a new, exotic type of nematic, called the
tetratic phase (Nt) [4]. In the tetratic phase four equivalent directions,
specified by two equivalent directors, arise. Fig. 2 is a schematic of a
typical particle configuration in the two nematic phases. Also, the
I–N transition in the HR fluid is highly non-trivial since its nature
depends in a complicated way on the particle aspect ratio κ=L/σ
(L being the rectangle length and σ the width). Hints of the phase be-
haviour found for these fluids might also be observed in granular
quasi-two-dimensional fluids made of anisotropic particles and sub-
ject to vertical motion [5].

2.1. One-component HR and HDR fluids

A deep understanding of the I–N transition in fluids of hard parti-
cles is obtained by focusing on the excluded volume vexc: the pres-
ence of one particle creates a surrounding region from which a
second particle is excluded. The available volume for the latter, V′=
V−vexc, where V is the system volume, depends on the relative orien-
tation of the two particles, and is maximised when parallel. In this
two-particle view of the problem the excluded volume (area in two
dimensions) becomes a central quantity.

The excluded area as a function of relative angle ϕ of the HRmodel
differs in a crucial way from that of the HDR model. These functions
can be obtained analytically:

vHDRexc ϕð Þ ¼ 4Lσ þ πσ2 þ L2 sinϕj j;
vHRexc ϕð Þ ¼ L2 þ σ2

� �
sinϕj j þ 2Lσ 1þ cosϕj jð Þ: ð2Þ

These functions exhibit a minimum at ϕ=0 and π but, in addition,
vexc
HR(ϕ) presents a secondary minimum at ϕ=π/2 which, when the

aspect ratio κ is sufficiently small, the fluid uses to stabilise the
tetratic phase.

A fruitful theory to explore the thermodynamics and structure of the
isotropic and nematic phases is the Scaled-Particle Theory (SPT) [4,6,7].
It is a density-functional theory: a free-energy densityΦ[h] is written in
terms of the orientational distribution function h(ϕ). The latter gives the
probability density that a particle is oriented with angle ϕ. Note that
∫
0

π
dϕh(ϕ)=1. The free energy density Φ[h]=−Ts[h], where T is tem-

perature and s entropy density, is split in ideal

βΦid h½ � ¼ ρ logη−1þ ∫π
0
dϕh ϕð Þlog πh ϕð Þ½ �

� �
ð3Þ

and excess

βΦex h½ � ¼ ρ −log 1−ηð Þ þ η
1−η

S0

� �
ð4Þ
(a) (b)

Fig. 2. Typical particle configurations in (a) the uniaxial nematic phase Nu, and (b) the
tetratic Nt phase.
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parts, where η is the packing fraction, defined as η=ρLσ=NLσ/A with
A the system area, and β=1/kT. Here

S0 ¼ 1
2v

∫π
0
dϕ∫π

0
dϕ′h ϕð Þvexc ϕ−ϕ′

� �
h ϕ′
� �

−1; ð5Þ

where v is the particle area. By numerically minimising Φ[h] with re-
spect to h(ϕ) (which is most easily done in Fourier space) [8], one ob-
tains the thermodynamic functions and the equilibrium orientational
structure. Order parameters can then be defined,

q1 ¼ ∫π
0
dϕh ϕð Þcos2ϕ; q2 ¼ ∫π

0
dϕh ϕð Þcos4ϕ ð6Þ

which measure respectively the usual nematic order and the tetratic
order. The three fluid phases involved have the following order param-
eters: q1=q2=0 (I); q1≠0 and q2≠0 (Nu); and q1=0, q2≠0 (Nt).

The SPT phase diagram of the HR model in the η vs. aspect ratio
κ plane is shown in Fig. 3. At high aspect ratios there is a continuous
I–Nu transition that becomes of first order as particles become less
elongated. The tetratic phase is stable for κb2.21, and is stabilised
from the I phase at η≃0.85 via a continuous phase transition.
Note that this value of η is expected to be well above the transition
to phases with spatial order (either smectic, columnar or crystal).
This point is discussed in Section 2.3.

Finally, the fluid phase diagrams of the HE and HDR models, not
shown, are much simpler, since only the I and Nu phases are stable,
with a continuous transition in the whole range of κ (note that the
phase diagrams of all models, HE, HDR and HR, tend to be similar
for large κ, and in fact identical in the limit κ→∞). This result agrees
with simulations [9,10,3]. The only non-uniform phase present at
high density is the crystal phase [10,3].

2.2. Beyond two-particle correlations

SPT only takes account of two-particle correlations. But higher-
order correlations must be important in the stabilisation of the
Nt phase. This is because, in typical Nt-like arrangements and in
order to obtain more optimised packings, particles tend to order
in small clusters that involve a few particles pointing in perpen-
dicular directions. Because of this effect, higher-order correlations
should extend the island of Nt stability to aspect ratios higher than
2.21 and packing fractions lower than 0.85.

In [11] we made an attempt to include three-particle correlations in
a way that (i) incorporates three-body effects, and (ii) reduces to the
SPT model when three-body correlations are switched off. The latter
are included by means of the third virial coefficient, which is computed
numerically as a function of the two order parameters q1 and q2. In
Fig. 3. Phase diagram of HR in the η−κ plane as obtained from SPT, showing regions of
stability of isotropic (I), uniaxial nematic (Nu) and tetratic (Nt) phases. Dashed curves:
continuous phase transitions. Shaded region: first-order phase transition. Points where
the continuous transition changes to first order are tricritical points.
effect, the new theory predicts a larger island of tetratic stability, with
the aspect ratio where the tetratic phase ceases to be stable shifting to
3.23, and the line defining the I–Nt transition moving down to the
range η=0.70–0.75. Further inclusion of higher-order correlations
will no doubt refine these results, although the formulation of new the-
ories is difficult for lack of approximations for the higher-order virial co-
efficients and the intrinsic difficulties to deal with these coefficients.

An alternative approach was followed in [12], where emphasis was
focused on the strong clustering observed in the HR fluid. Monte Carlo
simulations show that, because of particle shape and low dimensional-
ity, particles tend to align parallel to their neighbours thus inducing the
formation of large and persistent clusters that dominate the structure of
thefluid. The clusters consist of parallel hard rectangles, side by side, say
n in number, which form a “super-rectangle” of length nσ and width L.
With this fact in mind, the fluid can be viewed as a polydispersed mix-
ture of super-rectangles of different lengths nσ [12], and the extension
of SPT to mixtures can be applied. The only unknown quantity in the
problem is the distribution of cluster sizes, given by f(n). Assuming
this function to be exponential, e−λn (which follows from a chemical
mass-action law, an assumption which is supported by simulation),
we obtain λ from MC simulation and predict the phase behaviour. The
tetratic phase boundary can be shown to shift quite substantially as a
result of clustering effects, thus increasing the stability range of the
Nt phase.

2.3. Spatially-ordered phases

A more convenient framework than SPT to study phases with spa-
tial order in hard-particle models is fundamental-measure theory
(FMT). This theory, originally proposed by Rosenfeld [13] for hard
spheres, has been extended to other particle shapes; in particular,
there is a version for rectangles in 2D. By formulating a theory for
two species, each associated to one of two mutually perpendicular di-
rections, one can treat fluids with (restricted) orientational order.
This is the Zwanzig approximation, where one deals with two densi-
ties, ρx(r) and ρy(r), with r=(x,y) and expresses the local excess free
energy density Φexc(r) as

βΦexc rð Þ ¼ −n0 rð Þlog 1−n2 rð Þ½ � þ n1x rð Þn1y rð Þ
1−n2 rð Þ ; ð7Þ

in terms of averaged densities

nα rð Þ ¼ ∑
ν¼x;y

ρν★ω αð Þ
ν

h i
rð Þ;α ¼ 0;1x;1y;2f g; ð8Þ

which are obtained from convolutions of the densitieswith one-particle
geometrical measures ων

(α)(r) (see [14] for details). To Φexc(r) we add
the local mixing entropy density Φid(r),

βΦid rð Þ ¼ ∑
ν¼x;y

ρν rð Þ logρν rð Þ−1½ �; ð9Þ

(which is directly related to an orientational entropy) andminimise the
total free energy F ¼ ∫Vdr Φid rð Þ þΦexc rð Þ½ � with respect to both local
densities. The local density ρ(r) and uniaxial order parameter q1(r)
can be defined as

ρ rð Þ ¼ ρx rð Þ þ ρy rð Þ and q1 rð Þ ¼ ρx rð Þ−ρy rð Þ
h i

=ρ rð Þ; ð10Þ

respectively. In Fig. 4 the phase diagram of the FMT model in the η−κ
plane is presented. This diagram extends the calculations presented in
[14], where only the case κ=3was studied, although here we only cal-
culate the spinodal instabilities (not coexistence calculations) to non-
uniform phases. In this model, the I–N transition (dotted line) is always
continuous (note that transition densities are considerably lower in this
model than in SPT, due to the restricted-orientation approximation).
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Fig. 4. Phase diagram of the FMTmodel in the η−κ plane using the Zwanzig approxima-
tion. Dotted curve: isotropic–nematic transition. Dashed and continuous curves: bifurca-
tion lines to spatially-ordered phases. Dashed–dotted line: nematic order parameter q1
at the bifurcation line to the spatially-ordered phases. See text for details.

Fig. 5. Phase diagram for a HR/HDRmixture in the scaled-pressure pv1/kT vs composition
x plane,where x is the number fraction of the rectangles. Values of the parameters are: for
the rectangles, κ1=L1/σ1=1.5 and σ1=1; for the discorectangles, κ2=(L2+σ2)/σ2=2
and same particle area as a rectangle of aspect ratio equal to 2 and unit breadth. Open
circle indicates the critical point, and shaded circle denotes an azeotropic point. Gray
areas are two-phase regions, whilst dashed lines are continuous phase transitions.
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The continuous line corresponds to the spinodal (bifurcation) of the ne-
matic–smectic transition. The dashed line represents either the nemat-
ic–columnar (when q1, also represented in dashed–dotted line, is
non-zero), isotropic–columnar or isotropic–plastic solid (these two
cases cannot be distinguished from each other and correspond to the
case q1=0). Note that the transition from uniform to non-uniform
phases is at about η∼0.5 in thewhole range of aspect ratios κ; therefore,
assuming that a freely-rotating model showed instabilites in the same
range as in the present model, it is unlikely that a tetratic phase can
truly be stabilised if it only exists, even in metastable state, beyond
this value.
Fig. 6. Elastic constants of a nematic fluid of HDR particles with aspect ratio κ=16, as
obtained from DFT. (a) Splay elastic constant k1 as a function of packing fraction η;
(b) bend elastic constant k3 as a function of η; (c) the two elastic constants as a func-
tion of uniaxial order parameter q1; (d) ratio of k1 to k3 as a function of η.
2.4. Mixtures of two-dimensional particles

We have just seen that 2D particles possessing anisometric shape
can form nematic phases. Depending on the particle geometry the ne-
matic phase can occur in two varieties, the uniaxial and the tetratic
nematic phases, but the latter exists only for low aspect ratios. The
isotropic–nematic transitions are generally continuous, except for
the HRmodel in a small range of aspect ratios. An interesting question
is how this scenario may change when particles with different geom-
etries and elongations are mixed.

This problem can be tackled using the same theoretical scheme as
before, i.e. SPT, but extended to include a mixture of two components
[15–17], specifically HR and another component, such as hard discs,
HE, HDR or HR with different aspect ratio. Here orientational ordering
and demixing effects compete to give a complex phase diagram. As
expected, when rectangles are mixed, in increasing concentration,
with other particles not possessing stable tetratic order by them-
selves (e.g. discs, HDR or HR of high aspect ratio), the tetratic phase
is destabilized, via a continuous or discontinuous phase transition,
to uniaxial nematic or isotropic phases. Strong demixing behaviour
is observed when particle geometries of the two components are
very different, or simply aspect ratios are very different. As an exam-
ple, Fig. 5 shows the phase diagram of a mixture of HR with aspect
ratio κ1=L1/σ1=1.5 and σ1=1, and HDR of aspect ratio κ2=
(L2+σ2)/σ2=2 in the reduced pressure pv1/kT versus composition
x plane (σ2 is chosen as explained in the caption of Fig. 5). The nature
of the isotropic–nematic transition gets quite complex depending on
the mixture composition, with intervals where the transition is con-
tinuous or of first-order. At higher pressure a region of strong
demixing appears in the uniaxial nematic region, bounded by a
lower critical point.
2.5. Elastic constants

A two-dimensional nematic exhibits two independent elasticmodes:
splay andbend, controlled respectively by the elastic constants k1 and k3.
For a general deformation of the director field n̂ x; yð Þ, the macroscopic
elastic free energy can be written as in Eq. (1), and the constants appear
as curvatures of the free energy.

General expressions for the elastic constants exist in terms of the
correlation function of the model fluid [18,19]. In the case of SPT, the
correlation function is proportional to the Mayer function (basically
the excluded area), and these integrals can be calculated numerically
withoutmuch effort [19]. Fig. 6 shows the values of the elastic constants
for the HDRmodel with κ=16. Obviously the elastic constants are zero
at the bulk transition. Note that k3 is always larger than k1 (so that bend

image of Fig.�4
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deformations are more costly energetically than splay deformations),
with their difference increasing with density. At the highest nematic
densities their ratio is about 10; this is an important point since most
analyses based on elastic theory assume the one-constant approxima-
tion k1=k3, an approximation which may introduce significant errors.

2.6. Adsorption and confinement in a slit pore

Since the HRmodel exhibits a rich bulk phase diagram, one antic-
ipates fascinating surface and adsorption properties. In [14] a
semiinfinite system consisting of an isotropic fluid in contact with
a single (hard line) wall was studied. The favoured particle configu-
ration next to the wall was observed to be parallel; this orientation
propagates into the bulk material. As density is increased, complete
wetting of the wall–isotropic interface by the columnar phase was
found. The theoretical model used was a density-functional theory
based on the fundamental-measure functional in the Zwanzig ap-
proximation where, as mentioned before, particles are restricted to
lie only along one of the two Cartesian axes.

In the same work, the case of confinement by two such walls was
studied [14]. In line with the phenomenology observed in studies of
the sameproblembut in three dimensions [20,21], a complex behaviour
was found involving capillary columnar ordering and layering transi-
tions (Fig. 7). The latter occurs as a result of competition between the
natural periodicity of the columnar phase and the separation between
the two walls. A strong coupling between this phenomenon and that
of capillary ordering was also observed, and the complete surface
phase diagram was obtained. Fig. 7 shows a region of such phase dia-
gram, centred at the layering transitions involving 23 to 25 columns.
The isotropic–columnar transition in the pore is not monotonic, and os-
cillates depending on the commensuration between the columnar peri-
od and the pore width.

2.7. Confinement in a circular cavity

The circular geometry creates an additional geometric constraint
that gives rise to new phenomenology, specifically, to the formation
of defects. There are two aspects of this problem. One is the thermo-
dynamical aspect, which is important in assessing the different stable
phases that arise in the cavity. The other is the structural aspect. The
two are of course intimately connected.
Fig. 7. Phase diagramofHRunder confinement in a slit pore in the chemical potential μ vs.
pore width H for aspect ratio κ=3. Lines indicate first-order transitions (circles are actual
calculations). I: isotropic phase. C: columnar phase. The subscripts for the C labels corre-
spond to the number of columns in the confined phase. The horizontal line is the value
of chemical potential μ for the bulk I–C transition.
The wall imposes severe restrictions as to the favoured particle
alignment next to it but, by construction, the circular geometry cre-
ates a deformation of the director field and a corresponding elastic
free-energy cost. In turn, because of topological constraints, the de-
formation into a closed region generates a defect. Again, competi-
tion arises between surface, elastic and defect free energies which
give a rich phase behaviour as density (or chemical potential) and
cavity radius are varied. On top of this, there is a modified (capil-
lary) isotropic–nematic transition that is strongly affected by the
confinement.

In [22] we used a modified Onsager theory, based on excluded-
volume interactions, to analyse the thermodynamics of the HDR fluid
confined by a hard circular wall, Fig. 8, using particles with aspect
ratio κ=(L+σ)/σ=15 (note that, for such a large value of aspect
ratio, the results for the corresponding HR fluid will be very similar, so
our particular choice of particle geometry is not crucial). As mentioned
before, it turns out that the combination HDR fluid/hard wall brings
about parallel alignment of the nematic director. We forced the align-
ment to be perpendicular bymaking the wall act on the particle centres
of mass; the so-called ‘homeotropic anchoring’ results, but the associat-
ed surface free energy is not too large compared with kT (weak anchor-
ing conditions).

Under these circumstances, it is found that, for small cavity radii R,
the cavity is free of defects at the expense of surface free energy not
being optimized, and a more or less uniform director field results,
the so-called ‘uniform’, U phase. However, for larger cavity radius, a
defect with total topological charge k=+1 stabilises inside the cavi-
ty. This defect adopts one of two possible configurations: (i) either a
single, central ‘hole’ of charge k=+1 with a size that depends on R
and the chemical potential Δμ=μ−μ∞ (μ∞ being the bulk chemical
potential), the so-called ‘isotropic’ phase, I; (ii) or one consisting of
two defects of charge k=+1/2, of more or less constant size, located
along a diameter symmetrically with respect to the cavity centre, but
with a separation that depends on R and Δμ, the ‘polar’ phase, P. See
Fig. 9, where the phase diagram for κ=15 in the Δμ−R plane, with
the different phase boundaries, is shown. The U and P phases are sep-
arated by a line (continuous curve in the figure) where the structure
of the fluid changes discontinuously. The line ends in a terminal point
below which the two structures cannot be distinguished.

Computer simulations on HDR fluids confined into circular cavities
[23] and on hard ellipsoids in cylindrical containers [24] indicate that
a single, k=+1 point defect never stabilizes and that the configura-
tion with two k=+1/2 defects is always more stable. A careful inter-
pretation of our results supports this finding, since the I phase is in
fact related to the bulk isotropic phase (R→∞) and is stable below a
line (dashed curve in the figure) which we can refer to as capillary
Fig. 8. Hard discorectangle inside a hard circular wall of radius R. The wall acts on the
centre of mass of the particle, as indicated by the particle with dashed boundary which
is right at contact with the wall.
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Fig. 9. Phase diagram of a fluid of hard discorectangles with aspect ratio κ=(L+σ)/
σ=15 inside a hard circular wall in the Δμ vs. R plane. Δμ is the chemical potential
with respect to that of the bulk fluid, and R the cavity radius. U: uniform phase. P: polar
phase. I: isotropic phase. Icons on the right represent the director configuration in each
phase. Lines are phase transitions; solid curve: first-order U–P transition, ending in a ter-
minal point (open circle); dashed curve: continuous I–P transition (crosses correspond to
actual calculations).
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isotropic–nematic transition. We can then say that a nematic con-
fined in a circular cavity always exhibits two k=+1/2-point defects
instead of a single k=1-point defect, presumably because of the larg-
est free energy of formation of the latter.

The location of the capillary I–N transition on the phase diagram
deserves some comments. In bulk (R→∞) the transition is continuous
in our mean-field model (as commented above, simulations point to a
fluctuation-driven phase transition which cannot be correctly de-
scribed by a mean-field theory). As soon as the fluid is confined into
a circular cavity, long-wavelength fluctuations are suppressed and,
even worse, there can be no phase transition in the strict sense due
to the finite size of the system (this is in contrast with other types
of confinement where at least one direction is infinite). The
mean-field model, however, continues to exhibit features that can
Fig. 10. Panels from left to right: particle configurations and packing fraction, uniaxial orde
particles N=800, whilst the bottom panels pertain to the case N=1970. In all cases the ca
be interpreted as remnants of the bulk transition. For example,
the integrated order parameter exhibits a kink which we associate
with a ‘ghost’ capillary I–N transition; this is the dashed curve plot-
ted in Fig. 9. In our calculations the curve could not be continued to
smaller cavities due to numerical inaccuracies, and therefore we
are uncertain as to whether the curve continues and touches the struc-
tural transition (continuous curve) or else terminates in some kind of
end-point.

2.8. Monte Carlo simulation of confinement in a circular cavity

Recently we have been looking at the problem of confined ne-
matics in 2D from the point of view of Monte Carlo (MC) simulation.
To this effect, we have used a HR model inside a circular cavity but,
this time, the hard wall acts upon the whole particle and not just on
its centre of mass, so that the favoured particle alignment at the
wall is parallel. Instead of focusing on the thermodynamics and
phase changes in the cavity, we are interested in the structure and
type of defects that occur inside the cavity. This work is still in a pre-
liminary stage, and we only report some representative behaviour in
the regime of cavity radius R/Lb15. Larger cavity sizes will be consid-
ered in future studies.

We consider HR with aspect ratio κ=40; we chose this value to
match the value used by Galanis et al. [25] in their experiments of vi-
brated granular rods. We set the radius of the cavity to R=7.5L, and
start from a very dilute cavity with only a few particles. When this
state is equilibrated, particles are added one by one at random posi-
tions and with random orientations, and the system is equilibrated
between consecutive additions. All simulations use the standard
NVTMonte Carlo algorithm for constant number of particles and area.

Fig. 10 corresponds to the case N=800 (top) and N=1970 (bot-
tom). In each case the following is shown, from left to right: particle
configurations in a representative state, and equilibrium (ensemble
averaged) local fields for, respectively, packing fraction, uniaxial ne-
matic order parameter and director tilt angle with respect to the
(fixed) x axis (note that averages do not contain a sufficiently large
number of configurations so that the fields are a bit coarse). The
case N=800 corresponds to an isotropic phase (note that the tilt
angle is not significant wherever the order parameter is too low),
r parameter and director tilt angle local fields. Top panels correspond to a number of
vity radius is R=7.5L, and the particle aspect ratio is κ=40.

image of Fig.�9
image of Fig.�10


19D. de las Heras et al. / Journal of Molecular Liquids 185 (2013) 13–19
whilst the other contains a nematic phase, with an overall high value
of order parameter.

In the nematic case a remarkable structure forms inside the cavity.
It consists of one large region with two other, smaller regions separat-
ed from the first by wavy defect lines on which the order parameter is
suppressed. The distortion of the director in each of the three regions
is kept to a minimum (i.e. particles are close to being parallel) whilst,
at the same time, particles mostly satisfy the orientation favoured at
the wall. The director field rotates by 90° across the defect lines.
This is the preferred particle configuration of the sample, and not
one containing a central k=+1 defect or two k=+1/2 defects at op-
posite sides of the circular wall. We have checked that this structure
obtained by MC is robust with respect to the initial configuration
used to start the dynamics; for instance, one can start from a structure
with two k=+1/2 defects, and the MC dynamics invariably leads to
the same final structure with two defect lines.

In their study of elastic and anchoring constants in quasimonolayers
of vibrated steel rods, Galanis et al. [25] presented results for the case
R=4.7L which resemble very much the defected structure observed
by us in ourMC thermal simulations. We suspect that this type of struc-
turemay be favoured for low values of the ratio R/L, and that the typical
‘polar’ nematic phasewith twodefects inside the cavitywill be obtained
for larger cavities. A study of this problem is now being investigated in
our group [26].

3. Conclusions

Despite their apparent simplicity, 2D nematics continue to pres-
ent new challenges in their bulk and surface properties. In bulk, a
new type of 2D nematic, the tetratic phase, was recently discovered
using a simple SPT approach. This exotic phase, akin to the cubatic
phase found in three-dimensional nematic fluids, could be stable
for hard rectangular particles of low aspect ratio; this is still to be
seen, but strong tetratic correlations are actually observed in normal,
uniaxial phases, as shown in computer simulations [27], experi-
ments on colloidal rectangles [28], and in vibrated experiments on
quasimonolayers of granular rods [5], even for aspect ratios of at
least κ~6. The absence of strict long-range orientational order in
2D nematics, their strong fluctuations and non-standard transition
to the isotropic phase add difficulties in the effort to reach a deeper
understanding of this problem; clearly, more sophisticated theories
and additional computer simulations are needed.

On the other hand, 2D nematic are a useful testbed to understand
the formation of defects in confined geometries and also the subtle
commensuration effects, combining surface, bulk, elastic and defect
energies, that operate in confined systems.
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