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Simultaneous and independent topological
control of identical microparticles in non-
periodic energy landscapes

Nico C. X. Stuhlmüller 1, Farzaneh Farrokhzad 2, Piotr Kuświk 3,
Feliks Stobiecki3, Maciej Urbaniak 3, Sapida Akhundzada4, Arno Ehresmann 4,
Thomas M. Fischer 2 & Daniel de las Heras 1

Topological protection ensures stability of information and particle transport
against perturbations. We explore experimentally and computationally the
topologically protected transport of magnetic colloids above spatially inho-
mogeneous magnetic patterns, revealing that transport complexity can be
encoded in both the driving loop and the pattern. Complex patterns support
intricate transport modes when the microparticles are subjected to simple
time-periodic loops of a uniformmagnetic field. We design a pattern featuring
a topological defect that functions as an attractor or a repeller of micro-
particles, as well as a pattern that directs microparticles along a prescribed
complex trajectory. Using simple patterns and complex loops, we simulta-
neously and independently control the motion of several identical micro-
particles differing only in their positions above the pattern. Combining
complex patterns and complex loops we transport microparticles from
unknown locations to predefined positions and then force them to follow
arbitrarily complex trajectories concurrently. Our findings pave the way for
new avenues in transport control and dynamic self-assembly in colloidal
science.

The transport of microscopic colloidal particles suspended in fluids is
relevant for a wide range of physical and biological phenomena
including sedimentation1, drug delivery2–4, self-assembly5–7, microfluidic
devices8–13, and active systems14–16. External fields are often used to
control the motion of colloidal particles17–19. These include spatially
uniform fields such as gravitational20, electric21, and magnetic22–24 fields,
as well as spatially inhomogeneous fields such as the manipulation of
colloidal particles with optical tweezers25. Directed colloidal transport
can be achieved via Brownianmotors26–28 that combine non-equilibrium
fluctuations with spatially inhomogeneous energy landscapes29–31.

Usually, the colloidal particles are transported along the same
direction but the simultaneous transport of different particles across

different directions is useful and even a requisite in systems of various
length scales. For example, the transport of cargo on traffic networks
requires organizing various subtasks simultaneously32. Sorting of
microparticles driven on periodic lattices is possible because the
particles travel along different directions depending on, e.g. their
size33–36. In biology, the metabolism and structural diversity of the cell
demand the regulation of a vast array of molecular traffic across
intracellular and extracellular membranes.

In previous work, we have shown that robust, multidirectional,
and simultaneous control of colloidal particles that differ in, e.g. their
magnetic properties can be achieved with topological protection37,38.
As illustrated in Fig. 1a, paramagnetic particles are placed above a
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periodic magnetic pattern made of regions of positive and negative
magnetizations normal to the pattern. A uniform external magnetic
field of varying orientation drives the motion. The particles are trans-
ported following the minima of the periodic magnetic potential which
results from the interplay between the complex but static field of the
pattern and the simple but time-dependent uniformexternal field. The
orientation of the magnetic field varies in time-performing loops.
Hence, after one loop the orientation returns to its initial value. Loops
that wind around specific orientations induce the transport of the
colloidal particles by one unit cell of the magnetic pattern. During the
loop, minima of the magnetic potential cross from one unit cell to the
adjacent. Once the loop ends, the particle is in a position equivalent to
the initial one but in a different unit cell. The motion is topologically
protected in the sense that the precise shape of the loop is irrelevant.
Only the set of winding numbers of the modulation loop around
the specific orientations (the topological invariant) determines the
transport direction. The motion is therefore robust against
perturbations.

The specific orientations of the external field that are relevant to
control themotion depend on both the symmetry of the pattern37 (e.g.
square vs. hexagonal) and the particle properties. Hence, particleswith
different properties, e.g. paramagnetic and diamagnetic particles
above hexagonalmagnetic patterns39 aswell asmicro-rods of different
lengths38, can be transported in different directions independently and
simultaneously using periodic patterns. However, the use of periodic
patterns imposes several limitations on the transport. All particles that
belong to the same topological class (e.g. identical paramagnetic
particles or rods of the same length) are transported along the same
direction, independently of their absolute position above the pattern
as schematically represented in Fig. 1a. In addition, the location of the
particles above the pattern is unknown a priori and it must be deter-
mined externally via, e.g. direct visualization via microscopy.

These limitations are overcome here using inhomogeneous (non-
periodic) patterns.Wemake either the symmetry, Fig. 1b, or the global
orientation, Fig. 1c, of themagnetic patterndependent on the absolute
position above the pattern. As a result, the specific orientations of the

external field that control the motion depend also on the space
coordinate. The direction of the transport can then be locally con-
trolled by the modulation loop of the external field and also via the
local symmetry of the inhomogeneous magnetic pattern. We can
imprint the complexity of the transportmainly to the pattern, and then
use simple loops to generate complex transport as illustrated in Fig. 1b.
Following this idea we create non-periodic patterns that transport the
particles to a desired position by just repeating simple modulation
loops. We also create patterns in which the colloidal particles follow
arbitrarily complex trajectories driven by a simple time-periodic
modulation loop. Additionally, we create simple patterns and encode
the complexity of the transport in themodulation loops as sketched in
Fig. 1c. This allows us to simultaneously and independently control the
transport of identical colloidal particles located at different positions
above the pattern. We design for example a complex modulation loop
that controls the transport of 18 identical colloidal particles individu-
ally and simultaneously. Beyond its fundamental interest, our work
opens a new route to control the transport in colloidal systems with
potential applications in reconfigurable self-assembly40–43.

Results
Theplane inwhich theparticlesmove (action space) splits into allowed
and forbidden regions. In the allowed (forbidden) regions the sta-
tionary points of the magnetic potential are minima (saddle points).
The boundaries between allowed and forbidden regions in action
space are the fences. The position of the fences in control space C (a
sphere that represents all possible orientations of the external field)
depends on the symmetry of the pattern and it determines the loops
that induce colloidal transport (see Fig. 1). An extended summary of
the transport in periodic patterns37 is provided in Supplementary
Note 1 and Supplementary Figs. 1 and 2.

Here we focus on transport in inhomogeneous patterns. Sophis-
ticated transport modes can be achieved by adding complexity to
either the patterns, the loops, or to both of them. We see examples of
each type in the following sections. Details about the experiments and
computer simulations are given in the “Methods” section.

Fig. 1 | Periodic vs inhomogeneouspatterns. a Periodic square pattern (aunit cell
is highlighted in yellow),bhexagonal pattern inwhich the symmetryphaseϕ varies
in space, and c a pattern made of two square patterns rotated by an angle of 45°.
The patterns are made of regions with positive (black) and negative (white) mag-
netization normal to the pattern, see vertical arrows in (a). A polymer coating
protects the patterns and acts as a spacer for the paramagnetic colloidal particles
(orange) that are suspended in a solvent andmove in a plane parallel to the pattern
(action space). The motion is driven by a uniform external field (green arrow). The
control space C (gray spheres) represents all possible orientations of the external
field. The orientation of the external field varies in time performing a loop (green
curves). Loops that wind around special orientations induce particle transport.
These special orientations are determined by the position of the fences and

bifurcation points in control space which depend on the local symmetry of the
pattern. Shown are the fences of square patterns for one (a) and two (c) different
orientations, as well as those of four hexagonal patterns with different symmetry
phasesϕ (b).We also indicate the bifurcation points (black circles) in (b) which are
those points where two fence segments meet. Next to the fences, we show the
corresponding unit cell of the pattern. In periodic patterns (a) all the particles
move in the samedirection (orange arrows), independently of their position above
the pattern. In inhomogeneous patterns, a single modulation loop can induce
transport in different directions depending on the position of the particle above
the pattern. Complex particle trajectories can be generated using complex pat-
terns and simple loops (b) or simple patterns and complex loops (c).
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Complex patterns and simple loops
There is a full family of periodic hexagonal patterns characterized by
the value of the symmetry phase ϕ (see the “Methods” section) and
illustrative examples in Fig. 1b. We render the symmetry phase a con-
tinuous function of the position, which creates an inhomogeneous
symmetry phasemodulated pattern such as the example in Fig. 1b. For
slow enough spatial changes of the symmetry phase, the cells of the
modulated pattern deviate only weakly from the Wigner–Seitz cells of
corresponding periodic patterns with fixed values of the symmetry
phase. Hence, knowing how to control the transport in periodic pat-
terns is enough to control the transport in inhomogeneous situations.

We focus first on complex inhomogeneous patterns designed to
achieve locally different transport for a single specific task.Most of the
complexity of the transport is embedded in the pattern and therefore
the modulation loops of the external field are simple.

Topological defect in the symmetry phase
Weshow inFig. 2 a symmetry phasemodulated hexagonal pattern. The
details to generate the pattern aregiven in the “Methods” section. Each
time we wind around the center of the pattern we go through the full
family of hexagonal patterns exactly once (including the inverse pat-
terns with opposite magnetization) and return to the initial symmetry
phase. This introduces a topological defect at the center of the pattern
where the symmetry phase is not well defined.

The symmetry phase is constant along radial directions and the
modulation is weak everywhere except near the defect. To illustrate
this, we have dissected the pattern into hexagonal cells in Fig. 2a. We
also show enlarged Wigner Seitz cells of periodic patterns with a
symmetry phase corresponding to that of the radial ray of the inho-
mogeneous pattern. The Wigner Seitz cells of the periodic patterns
resemble closely the cells of the inhomogeneous pattern, even in the
proximity of the central defect. It is therefore expected that the
transport in the inhomogeneouspatterncanbeunderstood in termsof
the transport in periodic patterns.

The location of the fences in the control space varies substantially
as we wind around the defect in the action space. (See the stereo-
graphic projections of control space for selected values of the sym-
metry phase in Fig. 2a and Supplementary Fig. 1.) Hence, it is possible
to transport the microparticles into different directions depending on
the sector of the pattern. In particular, we can construct modulation
loops that use the central defect of the pattern as either an attractor or
a repeller of colloidal particles.

A stereographic projection of the modulation loop that attracts
the particles towards the defect is shown in Fig. 2a next to each
enlarged Wigner–Seitz cell. The loop is made of two subloops. Only
one of the subloops is active (green) for each value of the symmetry
phase ϕ. The subloop is active in the sense that it induces net
transport for those particles located in sectors of the pattern with

Fig. 2 | Pattern with a topological defect. a Magnetic pattern with a topological
defect in the symmetry phase ϕ. The pattern is dissected into hexagonal cells
(green hexagons). The central cell (yellow) contains the defect. Enlarged
Wigner–Seitz cells of selected periodic hexagonal lattices with symmetry phase ϕ

(see color bar) corresponding to their position in the pattern are shown. Next to
each enlarged cell, weplot a stereographicprojection of the corresponding control
space and themodulation loop that attracts the particles toward the defect. Shown
are the fences (blue), the equator (violet), and both the active (green) and the

inactive (red) subloops. The loop winds as indicated by the circular black arrow.
The two apparently open segments of the loop are actually joined at the south pole
of the control space (not visible due to the projection). The transport direction
(orange arrows) changes at the transition lines (black-dashed lines). b Illustrative
configurations of the position of transition lines (black-dashed lines) that give rise
to particle trajectories moving towards the defect (attractor) or away from it
(repeller). The particle trajectories are illustrated in orange.
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that value of ϕ. The other subloop is inactive (red) in the sense that
after one complete subloop, the particle returns to its position and
hence there is no net transport. Using two subloops we control
simultaneously the transport direction in sectors of the pattern with
opposite magnetization (different values of the symmetry phase).
Note for example how the active subloop in regions with C6 sym-
metry (ϕ = 0) becomes the inactive subloop in those regions with an
inverse pattern C 6 (ϕ = ± π/3) and vice versa (see Fig. 2a). To induce
transport a subloop must wind around at least three bifurcation
points of the fences in control space C, as explained in the Supple-
mentary Note 1. Recall that control space is simply the surface of a
sphere in which each point corresponds to one orientation of the
external magnetic field. The bifurcation points are the points in
which two segments of the fences meet in C, see examples in Sup-
plementary Fig. 2.

The complete attractor loop, made of two subloops, induces four
different transport directions (along ±a1 and along ±a3) depending on
the value of the symmetry phase (see Fig. 2a). Here, ai, i = 1, 2, 3 are
three lattice vectors of the periodic hexagonal pattern (see Fig. 2 and
the “Methods” section). The transition between the different transport
directions, e.g. from+a3 to −a1, occurs at specific values of the sym-
metry phase that can be adjustedwith the loop. See the transition lines
(dashed-black lines) in Fig. 2a.

By controlling the location of the transition lines we fix whether
the defect acts as an attractor or a repeller of particles (see Fig. 2b). In
both cases, the particles wind clockwise around the defect. Instead of
changing the position of the transition lines, we could also control
whether the defect attracts or repels microparticles by reversing the
direction of the transport. However, this requires a complete redesign
of the modulation loop. Simply reversing the direction of the mod-
ulation loop does not reverse in general the transport direction in the
whole pattern due to the occurrence of non-time reversal ratchets in
hexagonal patterns37,39.

In Fig. 3a, b we show the trajectories of a colloidal particle located
above the defect pattern according to Brownian dynamics simulations.
The particle is randomly initialized above the pattern and then sub-
jected to several repetitions of the attractor loop shown in Fig. 2. We
also show the trajectory followed by the particle under the repetition
of the repeller loop, depicted in Fig. 3c. The repeller and the attractor
loops have similar shapes since they differ only in the values of ϕ at
which the transport direction changes. The corresponding experi-
mental trajectories are shown in Fig. 3d. In the experiments, there are
several colloidal particles that are initially located above the pattern in
random positions. If the attractor loop is repeated enough times, one
colloidal particle will have reached the defect with almost certainty.
Once a particle reaches the defect it stays there. In the experiments,
further colloidal particles that try to enter the defect are repelled by
the particle already occupying the center via dipolar repulsion.We can
thus use the attractor loop to initialize one microparticle in the defect
center. Whereas the location prior to the action of the attractor loop
was unknown, it is known after the repeated application of the loop.
The topological initialization is robust to thermal fluctuations. Brow-
niandynamics simulations of colloidal particles athigher temperatures
still initialize the location of the defect. We briefly discuss the effect of
finite temperature in the “Methods” section and Supplementary Fig. 4.

Encoding complex trajectories in the pattern
Patternswith spatialmodulation of the symmetry phase canbe used to
encode arbitrarily complex particle trajectories. The patterns are
designed to induce the desired trajectory when the particles are sub-
jected to the repetition of a simplemodulation loop of the orientation
of the external field. Themodulation loop transports particles along all
possible directions in hexagonal patterns, i.e. along ±ai with i = 1, 2, 3,
but in a way that only one direction is active for a given value of the
symmetry phase. For example, particles on top of regions with C6

symmetry are transported towards −a3. The transport direction

Fig. 3 | Attractor and repeller of particles. a Trajectory of a colloidal particle
(randomly initialized) obtained with Brownian dynamics simulations above a pat-
tern with a central topological defect in the symmetry phase. The blue (orange)
trajectory is generated by the repetition of the attractor (repeller)modulation loop
that moves particles towards (away from) the defect. The pattern is colored
according to the value of the symmetry phase (color bar). The scale bar is 10a.
b Close-up of the region indicated by a yellow square in (a) and the trajectories
around the central defect. The background shows the local magnetization of the
pattern. c Stereographic projection of the repeller loop (green) in C. The equator
(violet circle) and the fences of the C6 and S6 patterns as well as their inverse
patterns, C 6 and S 6, (dashed curves) are also depicted as a reference. The fences
are colored according to the value of the symmetryphase. The twoapparently open

segments of the loop are actually joined at the south pole of the control space (not
visible due to the projection). The loop ismade of two subloopswinding clockwise,
as indicated by the circular arrows. d Experimental trajectories of several colloidal
particles (labeled with a numbered circle) above the same pattern with a topolo-
gical defect (yellow circle). The trajectories induced by the attractor (repeller) loop
are colored in blue (orange). Blue and orange trajectories correspond to different
experiments and have been superimposed in the figure. Note that under the
microscope regions with negative magnetization appear darker than regions with
positivemagnetization, i.e. the opposite of our color choice in e.g. (b). The scale bar
is 10a and the lattice constant of one cell is approx. 14μm.Movies of the simulated
and the experimental motion are provided in Supplementary Movie 1.
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changes at specific values of the symmetry phase determined by the
modulation loop. In Fig. 4awe show themodulation loop togetherwith
the representative fences and the resulting transport direction for
each value of the symmetry phase.

The detailed procedure to generate the patterns is described in
the “Methods” section and Supplementary Fig. 3. In essence, we first
draw the trajectories that the particles should follow by hand. Then, at
each position along the trajectory, we encode the transport direction
using the value of the symmetry phase. Finally, the value of the sym-
metry phase at each point in the complete pattern is calculated as a
spatially resolved weighted average of the symmetry phase along the
trajectory. As a result, the symmetry phase varies smoothly across the
pattern except for the occurrence of string-like topological defects in
the symmetry phase.

Figure 4b shows a symmetry phase modulated pattern together
with the corresponding simulated particle trajectories. The value of
the symmetry phase is color-coded (see color bar). The pattern is
designed to transport the particles along one stable trajectory that
forms a closed loop resembling the letter “B”. In Fig. 4b we have
highlighted the stable trajectory with a thick green line. Most particles
above the pattern either enter the stable trajectory or leave the pat-
tern. Occasionally one particle gets stuck in specific regions of the
pattern. This can potentially be avoided by the introduction of random
fluctuations in the modulation loop. In the presence of strong Brow-
nian motion, the stable trajectories broaden to a width of a few unit
cells, and additional stable trajectories might occur.

Corresponding experimental trajectories are shown in Fig. 4c.
Even though the agreement is not perfect, the experimental trajec-
tories follow closely the prescribed letter “B”, demonstrating, there-
fore, thepotential of themethod. Small variations in theposition of the
fences due to the imperfections of the pattern are likely the reason
behind the deviations shown in the experiments. Fine-tuning the
modulation loop and the height of the particles above the pattern
would likely improve the results.

Simple patterns and complex loops
We follow now the opposite approach by encoding the complexity in
the modulation loop. We create simple inhomogeneous patterns by

concatenating large patches of periodic square patterns. The patches
differ in the global orientation of the lattice vectors given by a global
phase ψ (see the “Methods” section). Each (simple) patch allows for a
rich variety of transport tasks. The task in each patch can be controlled
individually and simultaneously using rather complex modulation
loops in control space.

The fences of the C4 square pattern are four equidistant points on
the equator (see Supplementary Note 1). The four fence points in C
correspond to external fields pointing along the positive and negative
directions of the lattice vectors37,44, i.e. along ±a1 and ±a2. Therefore,
rotating the lattice vectors also rotates the position of the fences in
control space. Thus, it is possible to construct loops that wind around
different fences in C, and hence induce different transport directions,
depending on the orientation of the pattern ψ. An illustration is shown
in Fig. 5a.

Since the fences are points in C it is in principle possible to
concatenate an arbitrarily large number of patches with different
orientations and control the motion in each of them independently.
In practice, limiting factors might appear due to e.g. imperfections
in the patterns that effectively make the fences in C extended
regions, the angular resolution with which the orientation of the
external field can be controlled, and the presence of Brownian
motion. Due to the limiting factors, two patterns can be resolved
independently if they are rotated by an angle of at least Δψ. Hence,
the maximum number of patches that can be controlled indepen-
dently is (π/2)/Δψ since after a rotation of π/2 a C4 pattern repeats
itself (and so do the fences).

With a resolution Δψ = 5° it is then possible to control the motion
in up to 18 patches independently. As an example we program a single
loop in C that writes the first eighteen letters of the alphabet simulta-
neously, (see Fig. 5b and SupplementaryMovie 3). Note that the letters
are rotated by an angle ψ. For simplicity, we have designed an algo-
rithm to write custom trajectories in a square pattern with global
orientation ψ =0. Next, we apply a global rotation to the modulation
loop to control the transport in patterns with a generic orientation ψ.
As a result, the trajectories are also rotated.

The loop that writes the first 18 letters of the alphabet contains
2086 simple commands. Each command is a small closed subloop that

Fig. 4 | Symmetry phase modulated pattern. a Stereographic projection of
control space showing the equator (violet circle), the closed modulation loop
(green-solid curve), and the fences of patterns with C6, S6, C 6 and S 6 symmetries
(dashed curves). The two apparently open segments of the loop are actually joined
at the south pole of the control space (not visible due to the projection). The fences
are colored according to the value of the symmetry phase (see the annular color
bar). The transport directions induced by the loop (orange arrows) change at
specific values of the symmetry phase ϕ as indicated by the transition lines (black-
dashed lines). b Symmetry phase modulated pattern (the color indicates the value
of the symmetry phase). A global rotation, ψ =π/2 in Eq. (6), makes one transport
direction (lattice vector a3) parallel to the vertical axis. Particles above the pattern
and subjected to the repetition of the modulation loop in (a) write the letter ''B''.

Thin cyan lines show simulated particle trajectories for randomly initialized parti-
cles above the pattern. After several repetitions of the modulation loop, most
particles enter the stable trajectory, highlighted with a thick green-solid line.
c Experimental trajectories of colloidal particles above the pattern depicted in (b)
and subjected to the modulation loop shown in (a). The region shown in the
experiments (c) is smaller than that in simulations (b) due to the field of view of the
microscope. The inset in (c) is a close view of the region indicated with a yellow
circle in which we have altered the contrast of the image to better visualize the
magnetization. Under the microscope regions with negative magnetization appear
darker than those with positive magnetization. A colloidal particle (black dot) is
also visible in the inset. A movie of the motion in simulations and experiments is
provided in Supplementary Movie 2.
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either transports a particle in one unit cell along the four possible
directions of the square lattice or leaves the particle in the same
position, similar to the loops in Fig. 5a. Even though an angular reso-
lution of Δψ = 5° is achievable experimentally, the number of com-
mands required by the complete loop exceeds our current
experimental capabilities. Nevertheless, we show in Fig. 5c, the
experimental trajectories of a simplified loop that writes low-
resolution versions of the first four letters of the alphabet. The loop
is made of 96 simple commands. The agreement with computer
simulations is essentially perfect, as we demonstrate in a one-to-one
comparison in Supplementary Movie 4.

The simultaneous control of the transport in several patches of
rotated square patterns is particularly simple due to the simplicity of
the fences in C. However, the same ideas apply to patterns with other
symmetry classes.

Here,wehave initialized theparticles in thedesiredpositionswithin
their respective patches. As we discuss now, it is possible to automatize
this process by combining the patches with complex patterns.

Complex patterns and complex loops
Complete control over the colloidal transport is achieved by combin-
ing complexpatterns and complex loops. In Fig. 6we combine threeC4

patches that differ in their global orientation ψ and three hexagonal
patterns with a topological defect in the symmetry phase. The transi-
tion between both patterns occurs smoothly within a region of length
equivalent to approximately five unit cells of the square patterns.

We first make use of the patterns with a topological defect to
move randomly placed particles toward the defects. We simply repeat
the attractor modulation loop shown in Fig. 2 several times such that
the particles move and stay at the defects, see the blue trajectories of

the particles in Fig. 6. Once this initialization stage is finished we know
the precise position of the particles and can control them indepen-
dently. Using two simple loops we transport the particles downwards
from the defects to the square patches. We use one loop to move the
particles in the defect pattern (orange trajectories) and another loop
to move the particles in the transition region and the square patches
(green trajectories). Then, a relatively complex loop controls the
motion of the three particles independently. Each particle follows a
complex trajectory drawing either a square, a triangle, or a cross
depending on the value of the global orientation ψ (red trajectories).
Experimentally we tested each part of the loop separately, as shown in
the insets of Fig. 6. Again, the agreement between simulations and
experiments is excellent. The small errors that occur in the experi-
mental trajectories, likely due to imperfections in the pattern, do not
affect the global shape of the trajectories. A movie of the whole pro-
cess is shown in Supplementary Movie 5.

Discussion
We have shown that the combination of a complex static magnetic
field with a simple time-dependent uniform external field of varying
orientation allows us to control the motion of several identical
microparticles independently and simultaneously. The transport
complexity canbe broken down to a finite set of special orientations of
the external field. A modulation loop that winds around one of those
orientations induces transport along a known direction in a known
region of the pattern. Themotion is topologically protected since only
the winding numbers of the modulation loop around the special
orientations (topological invariant) are important. Hence, it is rela-
tively simple to generate loops and patterns that induce arbitrarily
complex trajectories. Our ideasmight be transferable to other systems

Fig. 5 | Simple patterns and complex loops. a Five squaremagnetic patterns (and
their corresponding control spaces) with a different value of the global orientation
ψ, as indicated. The fences in C (blue circles) are four points located on the equator
(violet circle). Thepositionof the fences depends on the valueofψ. Themodulation
loop consists of four interconnected subloops that wind counterclockwise. A
subloop is active (green) if it winds around a fence point (blue circles) and inactive
(red) otherwise. The orange segments of the modulation loop simply connect the
different subloops. Depending on the value of ψ, the modulation loop induces
different transport directions (green arrows) or no transport at all. b A pattern
made of 18 patches with square symmetry and different global orientationψ (color
bar). A modulation loop controls the trajectories of particles above each patch

simultaneously and independently. Theparticle trajectories (black)write thefirst 18
letters of the alphabet. The length of the scale bar is 10a. A movie can be found in
Supplementary Movie 3. c Experimental trajectories of colloidal particles above
four square patches rotated with respect to each other. A schematic unit cell
illustrating the global orientation is depicted in each patch. The length of the scale
bar is 5a and in this case, we use patterns with a = 7μm. A unique modulation loop
transports the four colloidal particles simultaneously. The trajectories are colored
according to the time evolution from blue (initial time) to red (final time). A movie
showing the whole time evolution and a one-to-one comparison with computer
simulations is available in Supplementary Movie 4.
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in which the transport is also based on topological protection. These
include, solitons45, nano-machines46,47, sound waves48,49, photons50,51,
and quantum mechanical excitations52.

The complexity of the transport is encoded in the magnetic
potential which varies in space and in time via the magnetic patterns
and the modulation loops, respectively. An alternative approach that
encodes the transport in the particle shape has appeared recently53.
There, Sobolev et al. find the shape of the rigid body that traces the
desired trajectory when rolling down a slope. We have restricted our
study to identical isotropic paramagnetic particles. However, as dis-
cussed in the “Introduction” section, colloidal particles with different
characteristics (e.g. diamagnetic and paramagnetic particles or parti-
cles with different shapes) might belong to different topological clas-
ses. The fences of particles belonging to different topological classes
are located in different regions in C. Above non-periodic patterns, the
control space of particles belonging to different topological classes
will also depend on the space coordinate. A precise control over the
transport depending not only on the position but also on the particle
characteristics is then possible. Therefore, beyond offering the possi-
bility to control the transport of identical microparticles simulta-
neously, our work also opens a new route towards dynamical self-
assembly in colloidal science. As an example, we have created a col-
loidal rod factory54 in which identical isotropic particles are trans-
ported toward a reaction site in which they self-assemble. Only when
they reach the desired aspect ratio, do the rods leave the poly-
merization site following the desired trajectory. The use of patchy
colloids55–58 with, e.g. hybridizationof complementary DNA strands59–61

and other shape-anisotropic particles62,63 would offer more versatility
to create complex functional structures.

We have considered transport above patterns made of identical
patches rotated with respect to each other. It is also possible to com-
bine patches of patterns with different symmetries provided that their
respective fences do not overlap in control space. Moreover, a com-
bination of both, i.e. a pattern made of patches with different sym-
metries, e.g. C4 andC6, that in addition are rotatedwith respect to each
other would substantially increase the number of tasks that can be
done simultaneously since their respective fences in control space do
not overlap.

In the experiments, the Brownian motion of the colloidal par-
ticles is negligible but it might play a role in other systems with
smaller colloids and/or at higher temperatures. Since the transport
is topologically protected, it is robust against perturbations such as
the presence of Brownian motion44. If we make Brownian motion
more prominent (e.g. by increasing the temperature or reducing the
particle size) the particles start to deviate from the expected tra-
jectories but overall the transport is robust. An example of Brow-
nian dynamics simulations at different temperatures is shown in
Supplementary Fig. 4. The topological protection will disappear
due to Brownian motion at sufficiently high temperatures and for
small enough particles. A possible solution would then be to
increase the magnitude of either the pattern field or the external
magnetic field such that the magnetic forces dominate again the
transport.

Our systems are very dilute and therefore direct interparticle
interactions and hydrodynamic interactions do not play any role.
However, it would be interesting to look at the effect of both super-
adiabatic forces64 and long-range hydrodynamic interactions65 in
denser systems.

Fig. 6 | Complex patterns and complex loops. Brownian dynamics simulations of
the transport of colloidal particles above a complex patternmade of three patches,
each one with a topological defect in the symmetry phase (top) connected to three
patcheswith square symmetry (down) rotatedwith respect to eachother. The color
of the patches with topological defects indicates the value of the symmetry phase
ϕ. The color of the square patches indicates the global rotationψ, illustratedwith a
sketchof themagnetization. Aunique complexmodulation loopmadeof fourparts
drives the transport in the whole system. In the first part, the repetition of the

attractor loop moves the particles toward the defects (blue trajectories) and lets
them wait there. The second part of the loop moves the particles downwards
through the patterns with defects (orange trajectories). The third part of the loop
moves the particles downwards in the square patterns (green trajectories). The last
part of the loop writes a custom trajectory (square, triangle, and cross) depending
on the global orientation ψ of the pattern (red trajectories). Insets show the cor-
responding experimental trajectories. The length of the scale bars (yellow) is 15a.
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Methods
System setup and computer simulations
Identical paramagnetic colloidal particles immersed in a solvent are
located above amagnetic pattern and are restricted tomove in a plane
parallel to the pattern (xy-plane), which we call action spaceA (Fig. 1a).
The pattern contains regions of positive, +m

p
, and negative, �m

p
,

uniform magnetization along the z-direction (normal to the pattern).
Thewidth of the domainwalls between oppositelymagnetized regions
is negligible. The particles are driven by a time- and space-dependent
external magnetic potential VmagðrA,tÞ. The potential is generated by
the static but space-dependent magnetic field of the pattern HpðrAÞ
and a time-dependent but spatially homogeneous external magnetic
field Hext(t). Here rA is the space coordinate in action space and t
denotes the time. The magnitude of the external field (constant) is
much larger than that of the pattern field, i.e. Hext ≫HpðrAÞ for any
position in A. Hence, the magnetic potential, which is proportional to
the square of the total magnetic field Vmag / �ðHext +HpÞ � ðHext +HpÞ,
is dominated by the coupling between the external and the pattern
fields:

VmagðrA,tÞ≈�v0χμ0HpðrAÞ �HextðtÞ: ð1Þ

Here μ0 is the vacuum permeability, χ is the magnetic susceptibility of
the colloidal particle, and v0 is the particle volume37. We have omitted
the termproportional toHext ⋅Hext in V

mag
since it is just a constant and

therefore it does not affect the motion.
In the overdamped limit, the equation of motion of one particle

reads

γ _rA = �∇AVmag +η, ð2Þ

where γ is the friction coefficient against the implicit solvent, the
overdot denotes time derivative, ∇A is the derivative with respect to
rA, and η is a delta-correlated Gaussian random force with zero mean
that models the effect of the collisions between the molecules of the
solvent and the colloidal particle (Brownian motion). We define our
energy scale ε as the absolute value of the average external energy that
a particle would have when the external magnetic field points normal
to the pattern. Hence, absolute temperature T is given in reduced units
kBT/εwhere kB is the Boltzmann’s constant. We use themagnitude of a
lattice vector of the periodic pattern a as the length scale. The
timescale is hence given by τ = γa2/ε. We use adaptive Brownian
dynamics66 to efficiently integrate the equation of motion. In the
experiments, the magnetic forces strongly dominate over the random
forces. Hence, random forces do not play any role. We use Brownian
dynamics simulations due to the overdamped character of the motion
in the viscous aqueous solvent. The code to simulate the colloidal
motion and to generate themodulation loops is available via Zenodo67.

As the external magnetic field is homogeneous in space, it can be
solely described by its orientation. The set of all possible orientations
ofHext forms a spherical surface that we call control space C. A point in
C indicates an orientation of Hext. We drive the colloidal motion by
performing closed loopsof the orientationofHext inC. Loops thatwind
around specific points in C induce colloidal motion. That is, once the
loop returns to its initial position, the colloidal particle has moved to a
different unit cell of the pattern. The transport is topologically pro-
tected since the precise formof the loop is irrelevant. Only thewinding
numbers of the loop around the specific points in C (which are the
topological invariants) determine the transport.

Experiments
Themagnetic filmswith the desired patterns imprinted are thin Co/Au
multilayers with perpendicular magnetic anisotropy68 lithographically
patterned via a home-built69 keV-He-ion bombardment70. Further
details about the fabrication process can be found in refs. 37,71–73.

The patterns have lattice vectors of magnitude 14μm if not stated
otherwise.

To reduce the influence of lateral magnetic field fluctuations due
to the fabrication procedure (which increases near the substrate) we
coat the magnetic pattern with a photo-resist film (thickness 1.6μm).
The coating layer serves other two purposes: it protects the patterns
and it acts as a spacer between the colloidal particles and the pattern
(see Fig. 1), in order to secure the condition ∣Hext∣≫ ∣Hp∣. We then place
paramagnetic colloids of diameter 2.8μm immersed in deionized
water on top of the pattern. The microparticles sediment and are
suspended roughly the Debye length above the negatively charged
coating layer on the pattern. The motion above the pattern is effec-
tively two-dimensional.

The uniform external magnetic field is generated with three coils
arranged around the pattern and controlled with a computer. The
magnitude of the external field is approximately 4 × 103 A/m. Standard
reflection microscopy techniques are used to visualize both the col-
loids and the pattern.

Square and hexagonal periodic patterns
Consider magnetic periodic N-fold symmetric patterns with either
N = 2 (square patterns) orN = 3 (hexagonal patterns). Examples of both
types are shown in Supplementary Fig. 1. In the limit of an infinitely thin
pattern located at z = 0, the magnetization is

MðrÞ=Mðr?ÞδðzÞêz , ð3Þ

with δ(⋅) the Dirac distribution, êz the unit vector normal to the pat-
tern, r⊥ = (x, y), and

Mðr?Þ=mpsign
XN

i= 1
cosðqi � ðr? � bÞ � ϕÞ+m0ðϕÞ

� �
, ð4Þ

where mp is the saturation magnetization of the domains. The wave
vectors qi in the square patterns are

qi =q0
�sinðπi=2� ψÞ
cosðπi=2� ψÞ

� �
, i= 1,2 ð5Þ

withmagnitudeq0 = 2π/a andabeing themagnitudeof a lattice vector,
which in square patterns can be defined with the wave vectors being
the reciprocal lattice vectors. That is, ai ⋅qj = 2πδij (see Supplementary
Fig. 1b). The global phase ψ sets the orientation of the lattice vectors
with respect to a fixed laboratory frame.

In the hexagonal patterns, the wave vectors are

qi =q0
� sinð2πi=3� ψÞ
cosð2πi=3� ψÞ

� �
, i= 1,2,3 ð6Þ

with magnitude q0 = 4π=ða
ffiffiffi
3

p
Þ. Here, the three wave vectors can be

related to three (linearly dependent) lattice vectors via qi ⋅ aj = 2πδij for
i = 1, 2 and a3 ⋅q3 = 0 (see Supplementary Fig. 1b).

In both square and hexagonal patterns, the wave vectors point
into the N different symmetry directions. The translational vector b in
Eq. (4) plays a relevant role only in inhomogeneous patterns. In peri-
odic patterns, we usually set b =0.

In square patterns, the symmetry phase ϕ in the magnetization
(see Eq. (4)), simply causes a trivial shift of all Wigner–Seitz cells with
respect to the origin of the pattern. Hence, for simplicity, we set it to
zero. In hexagonal patterns however, the symmetry phaseϕ has a non-
trivial effect since it determines the point symmetry of the pattern (see
Supplementary Fig. 1c), and therefore the modulation loops required
to transport the colloidal particles37. The Wigner–Seitz cell of a hex-
agonal pattern contains in general three symmetry points with C3

symmetry (rotation through an angle 2π/3 about the symmetry axis).
For special values of the symmetry phase, one of the three-fold
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symmetric points acquires a higher symmetry; either six-fold hex-
agonal C6 symmetry (for ϕ =0 and ϕ = ±π/3) or S6 symmetry, i.e. a C6

followed by a perpendicular reflection (for ϕ = ±π/6).
Finally, the parameterm0 in Eq. (4), which is actually a function of

the symmetry phase ϕ, alters the area ratio between up-magnetized
and down-magnetized domains. Following Loehr et al.37, we use here
m0ðϕÞ= 1

2 cosð3ϕÞδN,3 (therefore in square patterns m0 = 0) to ensure
that the average magnetization in hexagonal patterns is very small, i.e.

Z
Mðr?Þdr? ≈0: ð7Þ

Magnetic field of the pattern
To numerically compute themagnetic field of the pattern,Hp(r), at the
desired position in action space we first discretize the pattern in a
square grid with resolution 0.03a and compute the magnetization at
the grid points via Eq. (4). Next, we compute the magnetic field at the
grid points by convolution of the magnetization with the Green’s-
function of the system:

HpðrÞ=Hpðr?,zÞ=
1
4π

Z
dr0?

r? � r0? + zêz
jr? � r0? + zêz j3

Mðr0?Þ: ð8Þ

Here r⊥ = (x, y) is the position coordinate in a plane parallel to the
pattern. We calculate the magnetic field at an elevation above the
pattern z =0.5a, which is comparable to the experimental value. As
usual, we perform the convolution in Fourier space.

To calculate the magnetic field at a generic, off-grid, position we
simply interpolate the magnetic field using bicubic splines.

Pattern with a topological defect
For the pattern with a topological defect shown in Fig. 2, the symmetry
phase varies with the position r⊥ as

ϕðr?Þ=
1
3

π
2
� arctan q3 � r?,êz � ðr? ×q3Þ

�� �
, ð9Þ

and the global orientational phase is set to ψ =0 in Eq. (6). For our
choice of wave vectors (see Eq. (6) and Supplementary Fig. 1b), the
symmetry phase modulation is simply ϕðr?Þ= π=2� arctanðx,yÞ� �

=3.
Here arctanðy,xÞ returns the four-quadrant inverse tangent of y/x. The
symmetry phase varies therefore betweenϕ = −π/3 and π/3 as we wind
once around the origin. The topological charge of the defect located at
the center of the pattern (r⊥ =0) is q =Δϕ/(2π/p) = 1. Here Δϕ = 2π/3 is
the angle that the director rotates if we wind once counter-clockwise
around the defect, and p = 3 is the p-atic symmetry of the director
field74. (The symmetry phase can be described with a 3-atic director
field for which the local orientations are defined modulo π/3.) Varying
the symmetry phase between −π/3 and π/3 also introduces a shift of
the unit cell, cf. the unit cells for ϕ =π/3 and −π/3 in Supplementary
Fig. 1c. To rectify this shift and avoid therefore discontinuities in the
magnetization of the pattern, we need to use a local shift vector in Eq.
(4) given by

bðr?Þ= � ða1 + a2Þ
ϕðr?Þ
2π

: ð10Þ

The shift vector can be understoodas a Burgers vector since it corrects
for the spatial distortion of the pattern around the defect.

Symmetry phase modulated patterns
To encode in the pattern the desired particle trajectories, we use the
drawing softwareKrita75.Weprescribe the stable trajectory on a square
image with a side-length of 1000 pixels. In Krita, we draw the desired

trajectory with a brush (thickness 1 pixel) that encodes the drawing
direction in the hue of the colored pixels. The drawing direction
directly translates into the transport direction that the particles will
follow above the pattern. This procedure results in an image that is
essentially empty except for the trajectory lines. We then map from
hue to the symmetry phaseϕ. An example of the pattern at this stage is
shown in Supplementary Fig. 3a. The mapping from hue to ϕ is simply
a linear transformation.

Next, we give a value to the symmetry phase everywhere in the
pattern. To calculate the phase at a generic position r⊥ = (x, y) we
average over all the prescribed phases along the trajectories. Each
phase along the trajectory is weighted with a weight function pro-
portional to 1=r2d, with rd the distance between r⊥ and a point on the
trajectory. Special care needs to be taken due to the periodicity of the
symmetry phase76. We first transform the phases along the trajectories
into unit vectors, nextweaverage the vectors, and then transformback
the averaged vector into a value of the symmetry phase. An illustration
of the pattern after this stage is shown in Supplementary Fig. 3b.
Finally, we use the value of the symmetry phase in thewhole pattern to
calculate the magnetization via Eq. (4) (see Supplementary Fig. 3c).

Data availability
The code to simulate the system and to generate themodulation loops
is available at Zenodo67. All other data supporting the findings are
available from the corresponding author upon request.

Code availability
A code to perform the adaptive BrownianDynamics simulations of the
colloidal particles as well as to generate the modulation loops is
available at Zenodo67.
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