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ABSTRACT
We investigate the stationary flow of a colloidal gel under an inhomogeneous external shear force using adaptive Brownian dynamics sim-
ulations. The interparticle forces are derived from the Stillinger–Weber potential, where the three-body term is tuned to enable network
formation and gelation in equilibrium. When subjected to the shear force field, the system develops remarkable modulations in the one-body
density profile. Depending on the shear magnitude, particles accumulate either in quiescent regions or in the vicinity of maximum net flow,
and we deduce this strong non-equilibrium response to be characteristic of the gel state. Studying the components of the internal force parallel
and perpendicular to the flow direction reveals that the emerging flow and structure of the stationary state are driven by significant viscous
and structural superadiabatic forces. Thereby, the magnitude and nature of the observed non-equilibrium phenomena differ from the corre-
sponding behavior of simple fluids. We demonstrate that a simple power functional theory reproduces accurately the viscous force profile,
giving a rationale of the complex dynamical behavior of the system.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0130655

I. INTRODUCTION

Gelation in soft matter is a complex and important phe-
nomenon that has many practical applications ranging from the
use in household materials to advanced technological processes.1–6

A common property of gels is their ability to sustain weak
external stresses due to the formation of persistent long-range
network structures. From a microscopic point of view, it is the
nontrivial correlation of particles arising from their internal inter-
actions that gives gels their characteristic mechanical response.7–9

However, the route to the generation of the network topol-
ogy can be diverse.10 One common path to the gelation of colloids
involves the crossing of a liquid–gas spinodal, e.g., by a sudden
quench in temperature and the subsequent dynamical arrest of
heterogeneous dense regions. This arrested spinodal decomposition
is non-equilibrium in nature, and it bears similarity to the glass
transition although it is driven by interparticle attraction rather
than by repulsion.11–13 On the other hand, an equilibrium route
to gel formation lies open by careful choice of the interparticle
interactions in order to prevent macroscopic liquid–gas phase sep-
aration and to favor instead the local arrangement of particles into

interconnected clusters or chains. In this spirit, a multitude of inter-
action potentials have been investigated, which incorporate, for
example, limitation of particle connectivity,14–17 competing short-
range attraction and long-range repulsion,18,19 and anisotropy20–22

via, e.g., “patchy” interaction sites.23–25 The liquid–gas spinodal
can sometimes be pushed to very low temperatures and densities,
which enables large parts of the phase diagram to be governed
by the percolation into dilute networks, as in so called “empty
liquids.”26–28

A further class of particle models for colloidal gels that the
present work focuses on is based on the inclusion of three-body
interactions to the interparticle interaction potential, which con-
sists otherwise only of isotropic pair-interactions.29–36 It has been
shown that an appropriate choice of the three-body term reproduces
the distinctive network topology37 as well as the characteristic non-
linear response to homogeneous shear, including strain hardening
and yielding.33 Especially under external load, the dynamics of such
a gel can be intricate, e.g., exhibiting cooperative restructuring of
particle bonds31 and shear banding.33

While many studies have considered the response of gels to
a linear shear profile up to their breaking point, not much is
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known about their viscous flow behavior in inhomogeneous exter-
nal force fields. However, it can be expected that the intrinsic
features of a gel former, such as the tendency of particles to percolate,
have substantial ramifications in such out-of-equilibrium scenarios.
Specifically, one is tempted to assume that some of the genuine non-
equilibrium effects38,39 already reported for simple fluids (such as
shear migration) might even be amplified by additional three-body
interactions.

In this work, we show that gels modeled via a modified
Stillinger–Weber40 potential with a preferred three-body angle of
180○ as proposed by Saw, Ellegaard, Kob, and Sastry (SEKS)29,30

are indeed highly susceptible to these non-equilibrium effects when
sheared by a sinusoidal external force profile. For this, we numer-
ically investigate the behavior of the SEKS model with adaptive
Brownian dynamics41 (adaptive BD), which is a stable and effi-
cient method for the simulation of many-body systems governed
by the overdamped Langevin equations of motion. We find that
the properties of the emerging stationary state vary strongly with
temperature and with the amplitude of the external force profile.
Different behaviors occur in the shape of both the density and the
internal force profiles as compared to simple fluids. In particular,
we show that the superadiabatic (i.e., genuine out-of-equilibrium)
contribution to the internal force is substantial in magnitude and
that it is responsible for the structural and viscous behavior of
the stationary shear flow. This is discussed from a microscopic
point of view as well as in a coarse-grained fashion, where we
use power functional theory42,43 (PFT) to develop a quantitative
model for the superadiabatic viscous force. Besides representing a
generic situation, the sinusoidal shear flow profile could be seen
as a toy model for a mesoscopic convection roll. Convection typ-
ically occurs in sedimentation as upward streams alternate with
downward streams.44

This work is structured as follows: In Sec. II A, the modified
Stillinger–Weber potential as well as details for its efficient compu-
tation is given. The adaptive BD method and its advantages for our
non-equilibrium simulations are laid out in Sec. II B. In Sec. II C, the
protocol for the simulation of the stationary flow state is described.
In Secs. III A and III B, we show one-body profiles of the density
as well as the parallel and perpendicular components of the inter-
nal force for a range of simulation parameters and discuss their
behavior and interplay. An analogous interpretation on the level
of internal stresses is given in Appendix A. In Appendix B, we
showcase results for different values of the three-body angle of the
Stillinger–Weber potential, and in Appendix C, the unusual non-
equilibrium response of the gel is contrasted with numerical results
for the simple Lennard-Jones fluid. In Sec. III C, the description
of superadiabatic forces with PFT is illustrated and the results are
compared with those from simulation. We conclude in Sec. IV and
give an outlook to the investigation of further dynamical phenom-
ena observed in our simulations and to a more extensive analysis
with PFT.

II. SIMULATION METHOD
A. Particle model

The Stillinger–Weber potential40 has originally been used for
the simulation of solid and liquid silicon, and it has since been
optimized and adapted to other particle types.45,46 The interparticle

interactions consist of a two-body potential u2(r) that models
both isotropic attraction and repulsion depending on the dis-
tance r between two particles as well as a three-body contribution
u3(r, r′, Θ). This three-body term imposes an energetically favorable
angle Θ for three particles where a central particle is separated by the
pairwise distances r and r′ to two other particles. The directionality
of internal interactions is therefore only realized via u3. Crucially,
there is no need to explicitly incorporate orientational degrees of
freedom, which is an advantage both in simulations as well as in a
theoretical treatment.

In total, the internal energy potential possesses the form

U(rN
) =

N

∑
i

N

∑
j>i

u2(rij) +
N

∑
i

N

∑
j≠i

N

∑
k>j

u3(rij, rik, Θijk), (1)

with

u2(r) = Aϵ[B(
σ
r
)

p
− (

σ
r
)

q
] exp(

σ
r − aσ

), (2)

u3(r, r′, Θ) = λϵ[cos Θ − cos Θ0]
2

× exp(
γσ

r − aσ
) exp(

γσ
r′ − aσ

) (3)

for a certain particle configuration rN
= {r(i), . . . , r(N)

} of the many-
body system with N particles.

The parameters p, q, A, B, a, γ, λ, and Θ0 can be tuned to
alter the shape of the potential. A choice for these quantities, which
is used in the present work and varies in some aspects from the
one used originally by Stillinger and Weber,40 is given in Table I.
In particular, following previous studies of Saw et al.,29,30 we tune
Θ0 to obtain a gel former, which is described in more detail in the
following. The formulation in Eqs. (2) and (3) refrains from using
absolute units and only involves intrinsic energy (ϵ) and length
(σ) scales. In an overdamped system with friction coefficient ζ, all
physical quantities can therefore be expressed in a reduced form.

We note that the parameter a sets the cutoff distance since both
u2(r) and u3(r, r′, Θ) as well as their gradients vanish smoothly
for r → aσ and r′ → aσ. The potential is therefore inherently
short-ranged (cf. the small value of a in Table I). This is a favorable
property for the treatment in computer simulations since it enables
the use of neighbor-tracking algorithms to avoid superfluous eval-
uations for particles beyond the cutoff distance, which substantially
reduces the computational cost in large systems.

The parameter Θ0 in the three-body term u3(r, r′, Θ) sets the
preferred angle of a certain particle triplet (note that u3 vanishes for
Θ = Θ0 and that it is otherwise strictly positive for particles within

TABLE I. In Eqs. (2) and (3), we adopt the parameters p, q, A, B, a, and γ of the
original Stillinger–Weber40 potential and choose the three-body strength λ as deter-
mined in Ref. 47. In accordance with Saw et al.,29,30 a preferred three-body angle of
Θ0 = 180○ then leads to the percolation of interconnected chains, enabling colloidal
gelation in equilibrium.

p q A B a γ λ Θ0

4 0 7.049 556 27 0.602 224 558 4 1.8 1.2 23.15 180○
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the cutoff distance). Most commonly, as discussed in the follow-
ing, tetrahedral configurations are desired for which one chooses
cos Θ0 = −1/3. The strength of the three-body interaction term is
adjusted via λ, which is often referred to as the tetrahedrality47 for
the above choice of Θ0.

A further computational optimization is employed, which
makes use of the concrete structure of u3(r, r′, Θ) as given in Eq. (3).
Via a rewriting of the three-body sum and the introduction of
accumulation variables, an evaluation of the total energy and of all
particle forces is possible by only iterating twice over all interacting
particle pairs. In contrast, a naive implementation would require an
iteration over particle triplets. For details of this exact reformulation,
which leads to a substantial speedup in our simulations,48 consult
Ref. 30.

In summary, the versatility and computational efficacy of the
Stillinger–Weber potential make it applicable to a wide range of
problems. An important example, which conveys its use as an
effective interaction potential for more complex particle types, is
the monatomic water model of Molinero and Moore.47 It has been
shown by these authors that thermodynamic and structural prop-
erties of water (e.g., for the study of interfacial phenomena49) can
be captured accurately by this model via an appropriate choice of
the absolute values of ϵ and σ as well as the tetrahedrality λ. By
comparison with the melting temperature of water, they determined
an optimal value of λ = 23.15, which lies between the respective
tetrahedralities of silicon and carbon and which is adopted in our
simulations.

While Eq. (3) has initially been conceptualized as a model for
tetrahedrally coordinated particles, it is entirely conceivable to alter
the preferred three-body angle Θ0. A variation of Θ0 has signifi-
cant consequences for the spatial correlations of the fluid since the
formation of droplets might become energetically unfavorable and
the self-assembly into interconnected chains that form open net-
works is enforced. Therefore, the careful choice of the values of
Θ0 and λ is a means to reduce the effective valency and to sup-
press the liquid–gas phase transition, making the Stillinger–Weber
potential (1) a suitable model for colloidal gels. In the following,
we set Θ0 = 180○ although other values of Θ0 have been shown
to support gelation as well, e.g., as reported in Refs. 29 and 30,
where a detailed investigation of the phase diagram and percola-
tion behavior was carried out for various choices of λ and Θ0. (In
Appendix B, illustrative results are presented for lower values of Θ0,
which shows that its precise value has little impact on the sheared
steady state as long as network formation can occur.) It is worth
noting that gelation has also been investigated for other choices of
two- and three-body interaction terms u2 and u3 apart from those
given in Eqs. (2) and (3); see, e.g., Refs. 31–36. For instance, to yield
stronger angular rigidity, the cosine difference in Eq. (3) can been
exponentiated.31–33

B. Adaptive Brownian dynamics
An important property of gels is their mechanical response to

externally imposed strain. As particle bonds within the network are
capable of sustaining substantial forces and torques without break-
ing, a gel exhibits elastic behavior before stiffening50 as well as
yielding at intermediate and large shear strain due to bending and
breaking of bonds, respectively.33 Numerically, these results can be

obtained, e.g., by performing a linear deformation of the simulation
box and measuring the stress tensor. When using non-equilibrium
molecular dynamics, adequate thermostatting is required,51,52 which
is not straightforward if spatially inhomogeneous deformations are
considered. This is even more problematic if cause and effect are
reversed, and an external force profile is applied, which generates
a macroscopic net flow that is, hence, not known a priori. We cir-
cumvent these issues by considering overdamped dynamics, where
thermostatting is intrinsic.

Furthermore, an advanced numerical integration scheme
known as adaptive BD41 is applied, which improves upon conven-
tional BD simulations as described in the following. We consider the
overdamped Langevin equations

ṙ (i)(t) =
1
ζ

f(i)(rN
(t)) +

√
2kBT

ζ
R(i)(t), (4)

i = 1, . . . , N, as the relevant equations of motion to obtain particle
trajectories rN

(t) in our system consisting of N identical parti-
cles. Here, f(i)

(rN
(t)) is the total force acting on particle i, which

can be split into external and internal contributions, f(i)ext(r
(i)
(t))

and f (i)int (r
N
(t)) = −∇iU(rN

(t)), respectively. The friction coeffi-
cient ζ is the same for each (identical) particle, and the over dot
denotes a time derivative. The vectors R(i)

(t), i = 1, . . . , N, are
Gaussian distributed and must therefore satisfy ⟨R(i)

(t)⟩ = 0 and
⟨R(i)
(t)R( j)

(t′)⟩ = Iδijδ(t − t′). Here, the angular brackets denote an
average over realizations of the random process, I is the 3 × 3-unit-
matrix, δij is the Kronecker delta, and δ(⋅) is the Dirac delta function.
Thermostatting irrespective of applied external forces and any (pos-
sibly inhomogeneous) net flow is inherent in overdamped Brownian
dynamics as the temperature-dependent prefactor of the Gaussian
random vectors in Eq. (4) determines the average magnitude of the
random displacements.

Because Eq. (4) is a set of coupled stochastic differential
equations, its numerical treatment requires particular care. Specif-
ically, the use of the Euler–Maruyama method,53 which is usually
employed in conventional BD simulations, has serious drawbacks
regarding both its stability and accuracy. This is primarily due to
using a constant timestep interval Δt, which may lead to faulty par-
ticle displacements and erroneous force evaluations when particle
collisions are not resolved with the required precision (i.e., with a
small enough Δt).

Within adaptive BD,41 the automatic choice of an appropri-
ate timestep length Δtk is ensured in each iteration k→ k + 1 by the
evaluation of an embedded Heun–Euler integrator,

r̄(i)k+1 = r(i)k +
1
ζ

f(i)(rN
k )Δtk +

√
2kBT

ζ
R(i)k , (5)

r(i)k+1 = r(i)k +
1
2ζ
(f(i)(rN

k ) + f(i)(r̄N
k+1))Δtk +

√
2kBT

ζ
R(i)k , (6)

which yields two estimates r̄N
k+1 and rN

k+1 for the new particle posi-
tions at time tk + Δtk. If large discrepancies of r̄N

k+1 and rN
k+1 are

detected, the timestep Δtk is reduced and the step k→ k + 1 is
retried. In such a case of a rejected trial step, one must carefully
choose appropriate discrete random increments R(i)k to retain the
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Gaussian nature of the target random process R(i)
(t). For this,

adaptive BD utilizes Rejection Sampling with Memory (RSwM),54

which is an efficient algorithm to counteract the rejection of previ-
ously drawn random increments. RSwM, hence, guarantees the cor-
rect generation of a specified random process. With the numerical
treatment of Eq. (4) via adaptive BD, stable and accurate long-time
simulations of overdamped many-body systems are possible in equi-
librium but also under extreme non-equilibrium conditions, such as
when driving the system with a large external force fext(r). A detailed
description of adaptive BD is given in Ref. 41.

Hydrodynamic interactions that are mediated by the implicit
solvent are neglected in the equations of motion (4). From a compu-
tational standpoint, the performance of the simulations turns out to
be crucial to obtain accurate results for the quantities of interest, as
described in Sec. II C. The numerical treatment of hydrodynamic
interactions, which requires both the evaluation of long-ranged
forces as well as the generation of appropriately correlated random
displacements (e.g., via a Cholesky decomposition of the diffusion
matrix55), would have a significant impact on the required compu-
tational effort. Additionally, within adaptive BD, the Heun–Euler
pair (5) and (6) is conceived to handle only additive noise in the
underlying stochastic differential equation. Instead of the Heun
method (6), one would have to resort to an integration scheme with
a sufficient strong order of convergence for general noise terms.53

Moreover, from a physical point of view, we argue that the omission
of hydrodynamic interactions simplifies the analysis of the results
in Sec. III as all observations are ensured to stem solely from the
properties of the Stillinger–Weber particle model. In particular, we
show that its ability to form networks is the crucial mechanism that
causes the reported out-of-equilibrium response. As hydrodynamic
interactions tend to support anisotropic coagulation and transient
network states,56–58 we expect no significant qualitative change in
the reported observations.

C. Simulation protocol
In this work, we model an inhomogeneously sheared system

by imposing an external force profile fext(z) that is parallel to the
x axis and modulated in the z-direction. The x-component of the
force field is sinusoidal with amplitude K such that it complies with
the periodic boundary conditions of the cubic simulation box with
side length L, i.e.,

f ext,x(z) = K sin(2π
z
L
). (7)

With this choice, Lees–Edwards boundary conditions59 as
used in simulations with linear shear profiles60 are not required
because fext(r) and its derivatives are continuous at the periodic
boundaries. The application of the time-independent but spatially
inhomogeneous shear force (7) is not to be confused with time-
dependent oscillatory shear.61 The considered external force con-
stitutes the lowest-order Fourier mode within the simulation box,
and it can, hence, be taken as a generic model for experimentally
relevant scenarios, as occur, e.g., in convection44 or when inducing
inhomogeneous forces with a laser tweezer.

The simulation procedure is as follows: We set L = 30σ and ini-
tialize N = 1000 particles on a regular lattice, which yields a mean
number density of ρb ≈ 0.037σ−3. This configuration is randomized
for a short time (104 steps) at a high temperature of kBT = 10ϵ using

the adaptive BD method before instantaneously reducing the tem-
perature to the desired value and imposing the sinusoidal external
force profile (7). At this point, no particle bonds have formed yet
and a flow in the x-direction sets in immediately. From here, the
actual production run begins and the respective observables are sam-
pled, which is described in more detail in the following. Due to the
nature of the external force profile (7), the system retains trans-
lational invariance in the x–y-plane and forms a flow channel in
the upper and lower half of the simulation box. Since a transient
from the randomized particle distribution into this stationary flow
occurs initially, we partition the sampling of the production run
into consecutive sections of 106 steps. Thus, the sections where a
stationary flow has not been reached yet can be discarded, and the
remaining ones are averaged over. During individual runs, asym-
metric channel populations that persist for a long time are observed.
Rather than performing longer simulation runs to yield better time-
averages, we average over ∼50 distinct realizations of a simulation
until symmetric profiles are obtained. The typical simulation time of
the stationary flow in each individual run is then of the order of 105τ
with the Brownian timescale τ = σ2ζ/ϵ.

Using this protocol, a range of external modulation amplitudes
K and temperatures T is investigated. For each set of parameters,
we obtain the density profile ρ(r) as well as the force density profile
F(r) from sampling of the density operator

ρ̂(r) =∑
i

δ(r − r(i)) (8)

and force density operator

F̂(r) =∑
i

f(i)δ(r − r(i)), (9)

respectively. Thus, ρ(r) = ⟨ρ̂(r)⟩ and F(r) = ⟨F̂(r)⟩, where angu-
lar brackets denote an average over configurations of the stationary
flow state obtained according to the above simulation procedure.
Specifically, for the force density profile, we focus on its internal
contribution

Fint(r) = ⟨∑
i

f(i)intδ(r − r(i))⟩ (10)

to better reveal how the stationary state is stabilized by the inter-
nal interaction (1). The internal force density profiles are then
normalized by the density to acquire the internal force profile

fint(r) =
Fint(r)

ρ(r)
. (11)

A sufficiently large number of samples is necessary to yield
accurate results for the internal force profile as its convergence is
slower than that of the density profile.62 To investigate possible
finite-size effects, which might occur in gels specifically due to their
long-range effective correlations, we have conducted additional sim-
ulations where the side length L of the box has been doubled while
extending the external potential (7) in the z-direction by an addi-
tional shear period. No significant impact was found on the behavior
of the sheared system compared to the results shown in Sec. III for
the original choice of L.

A sketch of the system and of the flow velocity profile result-
ing from the applied shear force (7) is depicted in Fig. 1, where
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FIG. 1. Characteristic snapshots of an equilibrium gel (left) and a sheared gel in the steady state (right). An animation of the sheared gel is provided in the supplementary
material. The particles are colored according to the cluster to which they belong. The simulation box is a cube of side length L, and the temperature is set to kBT = 0.1ϵ.
For the sheared state, an external force amplitude of K = 5ϵ/σ is chosen. The forces acting on the sheared gel are schematically represented: A sinusoidal external force
pointing along the x-direction drives the flow of particles, forming two flow channels with the velocity profile (gray) closely following the external force profile (7). In the steady
state, a superadiabatic viscous internal force (cyan) emerges that locally either opposes or supports the flow. A strong density modulation (orange) develops along the
z-direction. The ideal-gas diffusive force (olive) that tends to homogenize the density profile is balanced by an internal force (pink) along the z-direction, which incorporates
both adiabatic and superadiabatic structural components.

we also show characteristic snapshots of the quiescent and of the
sheared gel. Additionally, the spatial variations of the one-body pro-
files are illustrated, and we indicate locally by arrows the directions
of the one-body force contributions. Actual simulation results are
presented and analyzed in the following, and we highlight the labels
of the one-body profiles in subsequent figures according to the colors
used in Fig. 1.

III. RESULTS
A. Variation of temperature

For certain state points and values of the amplitude of the
external force, large variations in the one-body profiles of density
ρ(r) = ρ(z) and internal force fint(r) = fint(z) are observed while the
system retains translational symmetry in the x- and y-directions. To
investigate the onset and origin of these inhomogeneities, we first
vary the temperature T and maintain a large constant amplitude
K = 5ϵ/σ of the external force profile. The results are shown in Fig. 2.

The one-body profiles remain almost featureless for kBT = 0.3ϵ.
At kBT = 0.2ϵ, an inhomogeneous structure begins to appear in the
internal force profiles fint,x(z) and fint,z(z). This becomes more
clearly visible as variations of the density profile ρ(z) from its
bulk value for kBT = 0.15ϵ. For kBT = 0.1ϵ, remarkable modulations
occur in all three quantities with spatial density variations of the
order of the mean bulk density ρb itself.

The emergence of structural features in the one-body profiles
when decreasing temperature is rapid and continuous. The spatial
modulations are significantly stronger than those observed in (non-
percolated) simple fluids,38 and we illustrate this in Appendix C via a
comparison to results for the dilute Lennard-Jones fluid. Therefore,
this effect can be linked to the percolation transition in equilib-
rium, which sets in at similar thermodynamic state points for the

considered particle model.63 We support this reasoning by an inves-
tigation of the cluster size distribution C(n), which gives the prob-
ability of finding a random particle in a cluster of size n. As is
standard, we define the agglomeration of particles into clusters to be
transitive with two particles belonging to the same cluster if their dis-
tance is below the cutoff distance aσ of the interparticle potential. In
Fig. 3, C(n) is shown for varying temperatures in a system sheared
according to Eq. (7) with K = 5ϵ/σ. One recognizes that the mean
cluster size grows with decreasing temperature and that clusters span
up to half of the system for kBT = 0.1ϵ.

Additionally, to better reveal the internal structure of the clus-
ters, we monitor the probabilities of the coordination numbers Pn,
i.e., the proportion of particles having n neighboring particles within
the cutoff distance aσ. The behavior of the coordination numbers
n = 0, 1, 2, 3 is shown in Fig. 4 as a function of inverse temperature.
It is apparent that for low temperatures, the structure of the net-
work is dominated by particle chains. Branching still occurs, which
interconnects the chains within the flow channels. This shows that
even in strongly sheared systems, microscopic correlations are dom-
inated by the three-body contribution to the internal interaction
potential (1).

B. Variation of external force amplitude
While the formation of finite-size clusters can be understood

as a relic of the equilibrium percolation transition, its effect on the
concrete structure of ρ(z) and fint(z) turns out to be substantial and
can only be explained if genuine non-equilibrium dynamics are con-
sidered. In the following, the response of the three-body gel over a
range of external force amplitudes K at constant (low) temperature
kBT = 0.1ϵ is investigated, whereby the system is driven further away
from equilibrium with increasing K. The corresponding one-body
profiles are shown in Fig. 5.
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FIG. 2. The density profile ρ(z) (a) as well as the component fint,z(z) (b) and
fint,x(z) (c) of the internal force (7) is shown. A constant shear amplitude of
K = 5ϵ/σ is maintained, and the temperature is varied with values of kBT/ϵ
= 0.1, 0.15, 0.2, 0.3 (indicated by ticks on the color scale). While fint,x(z) acts par-
allel to the flow direction, fint,z(z) constitutes a force perpendicular to the flow
that leads to the observed density inhomogeneity. This is illustrated by arrows,
which accentuate, in particular, the alternating direction in both the parallel and the
perpendicular internal force component for low temperature. The onset of struc-
tural inhomogeneities in the one-body profiles is continuous and occurs rapidly for
decreasing T when the equilibrium percolation transition is encountered.

To rationalize the results, it is instructive to work on the level
of forces and to consider the one-body force balance43

ζv(r) = fint(r) + fext(r) − kBT∇ ln ρ(r). (12)

The above relation is exact for arbitrary many-body Hamiltonians,
which can be shown, e.g., via an integrating-out of the Smolu-
chowski equation or in equilibrium, where v(r) = 0, by an applica-
tion of Noether’s theorem.64 The external force fext(r) is imposed
in our system via Eq. (7), and ρ(r) as well as fint(r) is accessi-
ble from their microscopic definitions given in Eqs. (8)–(11). The

FIG. 3. The cluster size distribution C(n) is shown for different values of the
temperature (indicated by ticks on the color scale) at a constant shear amplitude
K = 5ϵ/σ. Particles tend to form chains when driven by the shear force, cf. Fig. 1,
and the mean size of the chains grows when temperature is decreased. Addi-
tionally, for kBT = 0.1ϵ, the occurrence of large clusters that span across a flow
channel and include up to half of the particles in the system is observed.

term −kBT∇ ln ρ(r) = fid(r) on the right-hand side of Eq. (12) is the
force arising from ideal-gas diffusion. Furthermore, the time depen-
dence has been dropped as we consider a stationary state where
v(r) = J(r)/ρ(r) is the time-independent one-body velocity, which
can be obtained from the one-body current J(r). The current obeys
the continuity equation ∂ρ(r, t)/∂t = −∇ ⋅ J(r, t), and it is there-
fore divergence-free in the present case since the density profile is
stationary. We recall that J(r) is an average of the microscopic oper-
ator Ĵ(r) = ∑iv

(i)δ(r − r(i)), and it is thus directly accessible from
simulation.65

We proceed similar to Ref. 39 and distinguish between adia-
batic and superadiabatic contributions to the internal force profile
fint(r) = fad(r) + fsup(r). The adiabatic force fad(r) is defined to be

FIG. 4. The probabilities Pn of particles with a coordination number of n = 0, 1, 2, 3
are shown as a function of inverse temperature β and for constant shear amplitude
K = 5ϵ/σ. For low temperatures, individual particles (n = 0) as well as particle
pairs (n = 1) are desorbed into the network as both P0 and P1 decrease. The
network structure is dominated by chains (P2 is large) and branching is still viable,
as can be deduced from the moderate value of P3.
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FIG. 5. Similar to Fig. 2, the one-body profiles of velocity vx(z) (a), density ρ(z)
(b), perpendicular internal force fint,z(z) (c), and parallel internal force fint,x(z) (d)
are depicted. The temperature is now fixed to kBT = 0.1ϵ, and the amplitude of
the external force is varied with values of Kσ/ϵ = 0.1, 0.5, 1, 1.5, 2, 3, 4, 5, which
are indicated by ticks on the color scale (K = 0 corresponds to the bulk state and
is not shown). Arrows indicate the local direction of the internal force components
for the low (blue) and high (yellow) shear amplitude.

that of a reference equilibrium system, which is constructed to have
the same density profile as the original non-equilibrium state. Only
the superadiabatic part fsup(r) consists of purely out-of-equilibrium
forces, which, hence, determine both (inhomogeneous) structure

and flow of a driven colloidal suspension. By specializing to our
planar geometry, we now analyze the force profiles in Fig. 5 to
determine adiabatic and superadiabatic contributions.

Parallel to the flow, the density remains homogeneous due
to translational symmetry such that the x-component of its gradi-
ent vanishes. This also implies a vanishing adiabatic force fad,x(z)
= 0. The respective component of the internal force therefore only
consists of the superadiabatic contribution, i.e., fint,x(z) = fsup,x(z).
Hence, the x-component of the force balance Eq. (12) simplifies to

ζvx(z) = f sup,x(z) + f ext,x(z), (13)

which clarifies that fsup,x(z) plays the role of a viscous force and that
it is readily available via the simulation results for fint,x(z) shown
in Fig. 5.

In the z-direction, the density varies inhomogeneously, and the
internal force therefore consists of both adiabatic and superadia-
batic contributions. To distill fsup,z(z) from the data of fint,z(z) in
Fig. 5 would require the construction and simulation of an appro-
priately chosen equilibrium system,65,66 which will be considered in
the future work. Nevertheless, due to the absence of driving and flow
in the z-direction, i.e., fext,z(z) = 0 and vz(z) = 0, the force balance
along the z axis reduces to

0 = f sup,z(z) + f ad,z(z) − kBT
∂ ln ρ(z)

∂z
. (14)

Therefore, the non-equilibrium force component fsup,z(z) is neces-
sary to stabilize the density gradient, and it can thus be referred to as
a structural superadiabatic force. Equation (14) also reveals that the
internal force density is straightforwardly related to the derivative
of the density profile due to Fint,z(z) = fint,z(z)ρ(z) = kBT∂ρ(z)/∂z,
which can be utilized as a means to “force sample”67–69 the density
profile with a reduced variance. Additionally, an analogous descrip-
tion of viscous and structural effects on the level of internal stresses
is given in Appendix A.

In simple fluids, where the constituent particles only interact
via an isotropic pair-potential, non-equilibrium viscous and struc-
tural forces have been reported to occur both in an analogous sinu-
soidal shear profile38 and in more complex two-dimensional flows.39

However, the emerging features of density and force profiles—while
being measurable and conceptually important—are rather frugal
especially in the quasi-one-dimensional case (cf. Appendix C for
results of the sheared Lennard-Jones fluid). The relative variation
in density is comparatively small even for moderate external force,
and particles consistently accumulate in regions of low shear rates,
i.e., at the center of the flow channels. The superadiabatic forces pos-
sess a sinusoidal shape such that the structural force drives particles
to the center of the channels. The viscous force is Stokes-like in a
broad range of shear amplitudes, and it is always opposed to the
flow direction. In the following, these observations are compared to
the markedly different one-body profiles of the sheared three-body
gel illustrated in Fig. 1. The results of the variation of K are shown
in Fig. 5.

For small values of the external force amplitude K, the density
is sinusoidal in shape but the amplitude is inverted as compared to
the simple fluid scenario such that particles accumulate in regions
of large velocity gradient. When K is increased, the density maxima
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shrink while the depletion at the center of the channels remains pro-
nounced. For large values of K, we observe that particles now tend
to flee the regions of high velocity gradient. However, the migra-
tion is not simply directed toward the center of the flow channels
where the local shear rate vanishes, as would be the case in sim-
ple fluids. Instead, the density profile develops a double-peak and
retains a depletion zone right at the location of maximum flow
velocity. This behavior is reflected in the form of the internal force
fint,z(z), which progresses from a sinusoidal profile for small K to a
rapidly varying quantity for large K, thereby promoting and main-
taining the observed double-peak structure of ρ(z) within the flow
channels. The purely superadiabatic viscous force fint,x(z) coun-
teracts partially the flow for low to intermediate K similar to the
behavior found in simple fluids. For large external force amplitudes,
however, fint,x(z) locally acts in the same direction as the flow veloc-
ity at the sides of the channels, which is anomalous phenomenology
for a viscous force.

The striking signal in both structural and viscous forces can be
explained as a consequence of the three-body interaction (1). As the
system is weakly sheared, particles can still percolate into a large net-
work for the chosen temperature. With increasing K, bonds are first
broken in regions of maximum external force such that particles
become mobile and evade these regions—thus, a density depletion
zone develops. At even larger K, the formation of an extensive net-
work cannot be maintained and bonds break and dynamically rejoin
across the whole system. However, driven by the three-body term
in Eq. (1), particles still tend to develop finite-size chains, which
then align parallel to the flow direction. The mobility of the individ-
ual chains enables the migration to regions of low velocity gradient,
and the density profile, hence, inverts. Within the flow channels, the
chains organize into two lanes that are slightly offset from the center
and thus lead to a double-peak structure in ρ(z). This is because their
alignment parallel to the flow is driven by inhomogeneous shear
rate, and it can therefore only occur if ∂vx(z)/∂z ≠ 0. Yet, at the
extrema of the external force profile, the gradient of the resulting
flow vanishes and particle bonds are not aligned. This explains the
spatial offset of the chain formation to regions of finite velocity gra-
dient; cf. Fig. 5. The arrangement of particles into aligned chains
also clarifies the anomalous behavior of the viscous force fint,x(z)
that is encountered in this case and that can, hence, be understood
as a dynamical “drag-along.” In summary, the inclusion of three-
body terms in the interaction potential greatly affects the response
of colloidal suspensions to inhomogeneous shear and results in
collective effects, which influence and amplify structural and
viscous forces.

C. Power functional theory
We next turn to a theoretical description of the simulation

results with PFT42,43 and give a brief summary of its core concepts
in the following. PFT is based on an exact variational principle that
reproduces the time-dependent force balance equation

ζv(r, t) = fad(r, t) + fsup(r, t) + fext(r, t) − kBT∇ ln ρ(r, t). (15)

Thereby, the nontrivial contributions fad(r, t) and fsup(r, t), which
together constitute the internal force profile fint(r, t), are made
accessible via universal generating functionals of the density profile

ρ(r, t) and current profile J(r, t). Together with the external and dif-
fusive forces (right-hand side), they are balanced by the friction of
the overdamped system (left-hand side).

More precisely, the adiabatic force fad(r, t) incorporates the
functional derivative of the intrinsic excess Helmholtz free energy
Fexc[ρ],

fad(r, t) = −∇
δFexc[ρ]
δρ(r, t)

, (16)

where brackets denote functional dependencies. If one uses Eq. (16)
in Eq. (15) and neglects fsup(r, t), classical dynamical density func-
tional theory (DDFT)70 is recovered as an uncontrolled approxi-
mation. In the sheared three-body gel, as was shown in Secs. III A
and B, the dynamics are governed by genuine out-of-equilibrium
effects. Being a purely adiabatic theory by construction, DDFT is
strictly unable to reproduce or describe the observed behavior in our
system.71

Instead, in order to go beyond an adiabatic description, supera-
diabatic forces fsup(r, t) have to be taken into account. Within
PFT, this is made possible by functional differentiation of the
superadiabatic excess power functional Pexc[ρ, J],

fsup(r, t) = −
δPexc[ρ, J]

δJ(r, t)
. (17)

The force balance Eq. (15) can then be written as

ζv(r, t) = −
δPexc[ρ, J]

δJ(r, t)
−∇

δFexc[ρ]
δρ(r, t)

+ fext(r, t) − kBT∇ ln ρ(r, t), (18)

and it involves both adiabatic and superadiabatic interparticle forces
as systematically generated via the respective functionals.

Therefore, if Pexc[ρ, J] and Fexc[ρ] are known, PFT enables
the dynamical description of a system subjected to an arbitrary
external force profile fext(r) via Eq. (18) and the continuity equa-
tion. This reformulation, which reduces the many-body problem to
a variational principle on one-body quantities, is exact, in principle.
Crucially, both Pexc[ρ, J] as well as Fexc[ρ] are intrinsic function-
als that depend only on internal interactions and further intrinsic
properties of the system (e.g., temperature and density), but not
on the externally applied force profile fext(r, t). In practice, for a
certain interparticle interaction potential, approximations for
Pexc[ρ, J] and Fexc[ρ]must be found, which poses a nontrivial prob-
lem. For Pexc[ρ, J], the functional dependence will, in general, be
non-local both in space and in time (i.e., non-Markovian) as the his-
tory of ρ(r, t) and J(r, t) has to be considered to obtain an accurate
dynamical theory for time-dependent problems.

In the following, we use the framework of PFT to develop
a model that is capable of reproducing the found anomalous
behavior of the viscous force profile in the sheared three-body gel.
We focus on the viscous part because it is directly accessible in simu-
lation (we recall that fint,x(z) is purely superadiabatic), which, hence,
simplifies the following considerations. Recall also that a stationary
state is considered, which implies∇ ⋅ v(r) = 0 due to the continuity
equation and the chosen geometry. Since ρ(r) is time-independent,
we perform a change of variables to formulate Pexc[ρ, v] as a func-
tional of the velocity profile and use δ/δJ(r) = ρ(r)−1δ/δv(r). To
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yield an approximate explicit expression for Pexc[ρ, v], a semi-
local velocity gradient expansion72 is assumed. Due to being in a
stationary state, we can further specialize to a Markovian model
such that

Pexc[ρ, v] = ∫ dr ϕ(ρ(r),∇v(r)), (19)

with a suitable integrand ϕ(ρ(r),∇v(r)).
As in Refs. 38 and 39, we perform the general expansion up

to second order in ∇v(r) to obtain an expression for the inte-
grand ϕ(ρ(r),∇v(r)). Assuming a local dependence in space and
imposing rotational invariance, this expression can be reduced to

ϕ(ρ(r),∇v(r)) =
1
2

ηρ(r)2
(∇× v(r))2, (20)

where η is the coefficient of the superadiabatic viscous response.
This coefficient depends on intrinsic properties, such as interparticle
potential, density, and temperature, but it crucially is independent
of the imposed external force profile. Furthermore, the value of η
only alters the magnitude of the superadiabatic force profile result-
ing from Eq. (20) with its shape being fully determined by the forms
of ρ(r) and v(r).

The functional minimization (17) of Eq. (19) with the model
integrand (20) results in the superadiabatic force profile

fsup(r) = η[ρ(r)∇2v(r) − ρ(r)∇(∇ ⋅ v(r))

− 2(∇ρ(r)) × (∇× v(r))], (21)

where the right-hand side can be evaluated for the sheared gel. For
this, we approximate v(r) ≈ fext(r)/ζ since the magnitude of the vis-
cous force is small compared to ζv(r) and take the density profile
from the simulations as the input. The x-component of Eq. (21)
then yields the viscous force, which can be compared to the actual
simulation data fint,x(z) as shown in Fig. 5. To obtain a quantita-
tive comparison, the value of the transport coefficient η is fitted to
match the magnitude of the simulation results universally for the
considered shear amplitudes. The superadiabatic force profiles for
the viscous force within this PFT description are shown in Fig. 6,
where a value of η = 5 has been used for the viscous coefficient for
all considered values of K.

It is apparent that fsup,x(z) displays a double-peak within the
flow channels and therefore differs from the simulation results,
where only a single peak is observed. However, this inaccuracy is
not surprising since the model functional (19) and (20) is obtained
merely by an expansion in gradients of the velocity profile. The den-
sity enters the functional only locally, and the model is thus expected
to fail in regions where higher derivatives (e.g., the curvature) of ρ(r)
are significant, such as in the center of the flow channels. To achieve
better results in these regions, the integrand (20) of Pexc[ρ, v] could
be augmented by an expansion in ρ(r), which will be considered in
future work.

In between the flow channels, the viscous force profiles
obtained from Eqs. (19) and (20) match the simulation results
across the range of investigated shear amplitudes K. Particularly, the
anomalous change in the sign of the viscous force, which we attribute
to a dynamical drag-along of particles, is captured by the PFT model
as well, and it shows the same K-dependent behavior as in the simu-
lation. The successful reproduction of this phenomenon exemplifies

FIG. 6. The superadiabatic viscous force fsup,x(z) is shown as obtained from the
model (19) and (20) for Pexc[ρ, v] with η = 5. For this, the expression (21) is eval-
uated with the density profiles from the simulations in Sec. III B. The velocity
profiles are approximated analytically by v(r) ≈ fext(r)/ζ. When comparing the
shown PFT results (b) with the adaptive BD simulation data (a) for fint,x(z), good
agreement is found. Solely in the center of the flow channels, the simple model
for Pexc[ρ, v] leads to deficiencies due to the complex behavior of ρ(z) in these
regions.

that even simple model functionals for the excess power are capa-
ble of resolving nontrivial superadiabatic effects and that PFT is a
concise framework for their systematic investigation.

IV. CONCLUSION AND OUTLOOK
In this work, we have studied the behavior of a colloidal gel

modeled by the Stillinger–Weber potential (1), where the three-body
interaction (3) has been modified similar to Refs. 29 and 30. The gel
is subjected to a sinusoidal external shear profile. For the numeri-
cal investigation, we have utilized adaptive BD,41 which facilitates to
carry out efficient and stable long-time simulation runs to accurately
obtain the density and internal force profile in the stationary flow
state. Markedly different behaviors have been encountered depend-
ing on the chosen temperature T and the amplitude K of the external
force profile.

The simulations over a range of temperatures revealed that
the effect of the equilibrium percolation transition—which leads
to the formation of an extended and dilute network under quies-
cent bulk conditions—transfers to situations far from equilibrium.
Thus, while a system-spanning network is not formed for suf-
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ficiently strong inhomogeneous shear, the local arrangement of
particles into finite-size chains is still viable, which we have shown
via the cluster size distribution C(n). An investigation of the prob-
abilities of the coordination numbers Pn revealed that the clusters
are dominated by chains, which interconnect via branching. This
clustering effect is crucial to describe the emergence of structure
in the density profile ρ(z) and in the parallel and perpendicular
component of the internal force fint(z)with respect to the flow direc-
tion. Note that the global temperature acts as a control parameter
for the network formation in our system. In depletion-induced
gels, a similar effect could be achieved by a variation of the con-
centration of the depletion agent to tailor the effective attraction
between colloids.11–13

For an in-depth analysis, we have further split the internal force
into adiabatic and superadiabatic contributions with the latter being
the driving mechanism for genuine out-of-equilibrium effects. Due
to the chosen planar geometry, the parallel component of the inter-
nal force could be associated directly with a superadiabatic viscous
force. The perpendicular component consists of both adiabatic and
superadiabatic contributions instead, where the latter is needed to
stabilize the emerging density inhomogeneity.

When comparing the found results of the three-body gel
with known observations of colloids consisting of simpler particle
types,38,39 we found anomalous behavior for both viscous and struc-
tural effects. This could be attributed to be a direct consequence
of the internal three-body contributions. The emerging density
modulation is much larger in magnitude and shows a richer phe-
nomenology than in simple fluids, as we have illustrated via a
comparison to the Lennard-Jones fluid in Appendix C. In particu-
lar, the accumulation of particles can occur both in regions of high
and low velocity gradient depending on the applied external force.
For large amplitudes of the latter, the formation of particle chains
occurs within a double-lane near the center of the flow channels.
The superadiabatic viscous force, which generally opposes the flow
direction in simple fluids, has been shown here to flip its usual
counteracting direction for large K in some regions of the chan-
nels. We deduced this “drag-along” to be another consequence of
the formation of particle chains. Therefore, in both components of
the internal force profile, collective effects are involved, which sub-
stantially amplify the non-equilibrium response of the system. As we
have shown, colloidal gels are very susceptible to out-of-equilibrium
phenomena, and they can, hence, be taken as a prototypical model
for future study.

By utilizing PFT, a possible route to a coarse-grained descrip-
tion of the found results was given. This was exemplified for the vis-
cous force profile, where we have shown that a simple excess power
functional suffices to reproduce the simulation results and capture
the anomalous drag-along in the three-body gel. In the future work,
more sophisticated model functionals will be investigated in order to
alleviate some deficiencies of this simple description. Building upon
the found results, a similar analysis of the structural force profile
will be considered. This requires, however, the construction of an
equilibrium reference state to perform the splitting of the respec-
tive internal force component into adiabatic and superadiabatic
contributions.

In the conducted simulations, it was observed that asymmet-
ric channel populations that persist over long time scales occur
especially for intermediate values of the shear amplitude. Hence,

another objective for future work is a study of their statistics and
stability, possibly being indicative of a dynamical phase transition
as reported already in dense colloidal suspensions of simpler parti-
cles that exhibit flow-induced ordering or layering phenomena.73,74

Further interesting research could incorporate a variation of other
parameters of the Stillinger–Weber potential besides Θ0 to study
their impact on the response of the driven system. This is espe-
cially important from a practical perspective as the tuning of
microscopic interactions to yield desired material properties is a
central concept of material science, which has also been applied to
colloidal gels under shear.75 For a quantitative prediction, hydro-
dynamic interactions might become relevant, and it would be
useful to augment adaptive BD in this regard, possibly accompa-
nied by efficient evaluation schemes of then correlated random
increments.76,77 Additionally, going beyond the steady state and
investigating time-dependent situations, such as transients in a
switching protocol of the external force,78 could reveal the nature
of non-equilibrium memory effects. This is especially interesting
from the view point of PFT as memory kernels can be directly
incorporated in the theory, such that time-dependent phenom-
ena may provide further assistance in the development of accurate
functionals.

SUPPLEMENTARY MATERIAL

See the supplementary material for an animation of the steady
shear flow of the three-body gel at temperature kBT = 0.1ϵ and shear
amplitude K = 5ϵ/σ.
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APPENDIX A: INTERNAL STRESS TENSOR

Instead of working on the level of the force balance Eq. (12)
directly, one can consider a similar decomposition of the stress
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tensor as a generator of the respective force profiles. For this, we use
the definition

∇ ⋅ σ(r, t) = ζJ(r, t) (A1)

of the total stress tensor σ(r, t). To identify its internal contribution,
we multiply Eq. (12) by the density profile ρ(r, t), which yields the
force density balance

ζJ(r, t) = Fint(r, t) + Fext(r, t) − kBT∇ρ(r, t). (A2)

Insertion of Eq. (A2) into Eq. (A1) and an analogous splitting then
gives rise to the definition

FIG. 7. The density profile (a) as well as structural (b) and viscous (c) components
of the internal stress tensor σ int(z) as obtained via Eqs. (A4) and (A5) is shown.
The components of the internal stress tensor are scaled by the squared particle
diameter divided by the energy scale (σ2/ϵ). A constant temperature kBT = 0.1ϵ
is maintained, and values of Kσ/ϵ = 0.1, 0.5, 1, 1.5, 2, 3, 4, 5 (indicated by ticks on
the color scale) are chosen for the shear amplitude as in Fig. 5.

∇ ⋅ σint(r, t) = Fint(r, t) (A3)

for the internal stress tensor σint(r, t).
In the considered stationary state, the time dependence can be

dropped. Obtaining σint(r) from the sampled force density profile
Fint(r) requires an integration of its spatial components according
to Eq. (A3). Pressure-like contributions (corresponding to integra-
tion constants) are not accessible from the force density profiles
alone and require further suitable measurements in simulation.79,80

(The standard Irving–Kirkwood81 treatment is only valid for pair-
potentials.) We omit such constants in the following and only con-
sider relative inhomogeneities of the internal stress. Additionally, a
non-unique82 divergence-free part of σint(r) remains undetermined
from the integration of Eq. (A3) and is set to zero.

We specialize to the planar geometry of our system, which
enables a straightforward integration to obtain two relevant com-
ponents of σint(z) via

σint,zz(z) = ∫ dz Fint,z(z), (A4)

σint,zx(z) = ∫ dz Fint,x(z). (A5)

Analogous to Fig. 5, where the x- and z-component of the inter-
nal force is depicted, we show results for the components σint,zz(z)
and σint,zx(z) of the internal stress tensor as obtained by Eqs. (A4)
and (A5) in Fig. 7. Here, the integration constants were chosen such
that σint,zz(z) vanishes at the boundaries of the box and σint,zx(z) is
anti-symmetric under motion reversal (v(r)→ −v(r)).

It is observed that σint,zz(z) reproduces the shape of the density
profile, which is consistent with the considerations in the main text;
cf. Eq. (14). For σint,zx(z), a sinusoidal shape is obtained at low shear
amplitudes. When increasing K, the zx-component of the internal
stress tensor develops a secondary structure. This is indicative of the
non-linear response of a colloidal gel to applied shear, which mani-
fests itself for inhomogeneous shear in an anomalous behavior of the
viscous contribution.

APPENDIX B: VARIATION OF THE THREE-BODY
ANGLE

In Fig. 8, we show illustrative results of the sheared three-body
gel for different values of the preferred three-body angle Θ0. For
lower values of Θ0, it is increasingly difficult to obtain symmet-
ric profiles. We choose Θ0 = 150○ as the lowest value to keep away
from the liquid–gas binodal and to prevent the formation of droplets
within the flow channels, which hinder an accurate sampling. It is
apparent from the results that the choice of Θ0 = 180○ in the main
text is not artificial and that similar behavior can be achieved also
for lower values of Θ0 as long as gelation is enforced. When decreas-
ing Θ0, one even observes larger local forces at the sides of the flow
channels [cf. fint,z(z) and fint,x(z) in Fig. 8] as the desorption of par-
ticle strands is enhanced due to the increased ability of branching.
We refer to Refs. 29 and 30 for an investigation of the equilibrium
behavior of the three-body gel for different values of the three-body
angle Θ0 and the three-body interaction strength λ.
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FIG. 8. The density profile ρ(z) (a) as well as the perpendicular (b) and parallel (c)
component of the internal force profile fint(z) is shown for the sheared three-body
gel with modified preferred three-body angles of Θ0 = 175○, 170○, 160○, 150○

(indicated by ticks on the color scale). We set a temperature of kBT = 0.1ϵ and
a shear amplitude of K = 5ϵ/σ. As network formation also occurs for the above
values of Θ0 and as it is the driving mechanism for the strong superadiabatic
response, one can observe similar behavior as for the choice of Θ0 = 180○ in the
main text. Below a value of Θ0 = 150○, an accurate sampling of the steady state
was hindered by the formation of droplets in the flow channels.

APPENDIX C: COMPARISON TO THE LENNARD-JONES
FLUID

For comparison, we show the behavior of the truncated
Lennard-Jones fluid under an analogous shear protocol as for
the three-body gel. The Lennard-Jones interaction potential only
consists of the radially isotropic pairwise contribution

u2(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4ϵ[(
σ
r
)

12
− (

σ
r
)

6
], r ≤ rc,

0, r > rc,
(C1)

with the cutoff distance rc = 2.5σ, and it can, hence, be taken as an
example of a simple fluid or colloidal suspension.

In Fig. 9, the density profile as well as the parallel and per-
pendicular contribution of the internal force profile is shown for
a temperature of kBT = 1.5ϵ and for various (large) shear ampli-
tudes K. All other system parameters are adopted from the simu-
lations of the sheared gel, which yields the same low mean density
of ρb ≈ 0.037σ−3. One recognizes that the superadiabatic response
of the Lennard-Jones fluid differs starkly from that of the three-
body gel; cf. 5. The density inhomogeneity of the simple liquid is
orders of magnitude smaller and possesses a sinusoidal shape that
does not change qualitatively for different shear amplitudes. Note
that despite driving the Lennard-Jones system with much stronger

FIG. 9. The steady state behavior of a sheared low-density Lennard-Jones fluid
is shown for a temperature of kBT = 1.5ϵ and for various shear amplitudes
Kσ/ϵ = 5, 10, 20, 50, 100 (indicated by ticks on the color scale). The superadi-
abatic response of this representative simple fluid is much weaker than in the
sheared three-body gel. The migration of particles always occurs toward the center
of the flow channels, where the velocity gradient vanishes, as can be deduced from
the density profile ρ(z) (a) and the perpendicular internal force profile fint,z(z) (b).
The viscous superadiabatic force fint,x(z) (c) counteracts the flow direction, and
unlike in the three-body gel, no drag-along is observed.
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external forces, the onset of notable superadiabatic effects occurs
only for sufficiently large inhomogeneous shear as opposed to the
three-body gel, where a substantial density inhomogeneity devel-
ops also for low values of K. In particular, no inversion of the
extrema in the density profile ρ(z) is observed, as was the case for
the three-body gel when transitioning from low to high shear. The
internal force components reflect this situation with both fint,z(z)
and fint,x(z) being much smaller and showing less features than in
the three-body gel. Especially for fint,x(z), no anomalous drag-along
is observed as the superadiabatic viscous force in the Lennard-Jones
fluid always counteracts the flow.
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