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Colloidal transport in twisted lattices of optical tweezers
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We simulate the transport of colloidal particles driven by a static and homogeneous drift force, and subject to
the optical potential created by two lattices of optical tweezers. The lattices of optical tweezers are parallel to
each other, shifted, and rotated by a twist angle. Due to a negative interference between the potential of the two
lattices, flat channels appear in the total optical potential. At specific twist angles, known as magic angles, the
flat channels percolate the entire system and the colloidal particles can then be transported using a weak external
drift force. We characterize the transport in both square and hexagonal lattices of twisted optical tweezers.
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I. INTRODUCTION

Optical tweezers [1] use optical gradient forces to manip-
ulate micrometer-sized colloidal particles. Lattices of optical
tweezers arranged in arbitrary patterns can be created, e.g.,
using diffractive optical elements [2], combining beam split-
ters and refractive optics [3], by means of computer-generated
holograms [4], and even rapidly moving a single beam among
different locations such that the desired pattern emerges as a
result of a time-averaged optical potential [5–7].

Periodic lattices of optical tweezers in combination with a
driving force are widely used to sort particles [8–11]. Using
a three-dimensional periodic optical lattice, MacDonald et al.
[8] were able to sort particles exploiting the differences in the
interactions between the particles and the optical lattice. Also,
as shown by Lacasta et al. [10], particles moving in a periodic
optical potential can behave differently according to their size
or particle index of refraction.

Motivated by the emerging field of twistronics [12], we
adapt here the setup of Lacasta et al. [10] to model two sets
of periodic lattices of optical tweezers that are parallel to each
other and are also twisted by a given twist angle. Using com-
puter simulations we study the transport of colloidal particles
subject to the combined potential of both lattices and driven
by a uniform and time-independent drift force. At specific
twist angles, known as magic angles, the transport is more
efficient due to the formation of flat channels in the combined
optical potential of both lattices. Emergent phenomena in
twisted bilayers, such as the occurrence of superconductivity
in twisted graphene [13], has been observed in fundamentally
different physical systems, including the appearance of quasi-
one-dimensional channels along which Abrikosov vortices
can freely flow in twisted pinning lattices [14], the formation
of flat bands in twisted acoustic metamaterials [15], and en-
hanced colloidal transport in twisted magnetic patterns [16].
In contrast to single magnetic patterns, the magnetic potential
of two twisted patterns develops flat channels along which it
is possible to transport a magnetic colloidal particle applying
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a weak drift force [16]. The flat channels percolate the entire
system only for specific values of the twist angle. We show
here with computer simulations that similar phenomena arise
also in a fundamentally different system made of twisted
lattices of optical tweezers.

II. MODEL AND RESULTS

A schematic of the model is shown in Fig. 1. The colloidal
particles, which are driven by a drift force, are restricted to
move in the middle plane between two parallel lattices of
optical tweezers. We consider two periodic lattices of optical
tweezers with square and hexagonal symmetries. The lattices
are twisted by an angle α and shifted by half a unit lattice vec-
tor. A destructive interference between the optical potential
generated by both lattices results in the formation of channels
along which the potential is almost flat. Using a weak drift
force it is then possible to transport the colloidal particles
along the flat channels. At specific twist angles, known as
magic angles, the flat channels percolate the entire system
allowing transport over arbitrarily long distances.

A. Optical potential

Following Lacasta et al. [10], we approximate the optical
potential at position r by

V (r) = − V0

1 + e−A[g(r)−1]
, (1)

with positive constants A and V0 that control the steepness
and the depth of the optical potential, respectively. The spatial
modulation and the interference between the two arrays of
optical tweezers is controlled by the function

g(r) =
N∑

i=1

{
cos

[
qi ·

(
R−α/2 · r − a1

2

)]

+ cos (qi · Rα/2 · r)

}
, (2)

where each of the two terms in the summation represents one
of the lattices of optical tweezers.
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FIG. 1. Schematic of the model: side (left) and top (right) views.
A colloidal particle immersed in a solvent is located above a glass
plate in the middle plane between two lattices of optical tweezers.
The lattices are identical but are rotated by an angle α around an
axis normal to them. The interference between the optical potential
of both lattices creates an anisotropic potential landscape for the
colloidal particles.

The lattices are shifted relative to each other by half of the
first lattice vector of the single lattice prior to being rotated,
a1/2, which we set along the x axis, i.e., a1 = aêx, with a
the magnitude of all the lattice vectors. The relative shift by
half of a lattice vector maximizes the destructive interference
between the two lattices at the flat channels. The matrix Rθ

is a rotation matrix by an angle θ around the axis normal to
the lattice that passes through the origin. In Eq. (2) we rotate
each lattice by an angle α/2 in opposite directions such that

the total rotation between the lattices is the twist angle α. The
reciprocal lattice vectors qi are given by

qi = q

(
sin (π i/N )
cos (π i/N )

)
, (3)

where in the square lattice N = 2 and q = 2π/a, and in the
hexagonal lattice N = 3 and q = 2π/[a sin(π/3)].

B. Magic angles

The total optical potential that results from the interference
between both lattices is a moiré pattern. For specific twist
angles the resulting potential is periodic. Among those angles
for which the potential is periodic, we find the so-known
magic angles, with particularly small lattice constants, given
by [16]

αm(k, N ) = 2 arctan

(
1

Nk+1 sin
(

π
N

)
1 + 1

Nk+1 cos
(

π
N

)
)

, (4)

where k is a natural number and again N = 2 for the square
lattices and N = 3 for the hexagonal lattices.

The optical potential of lattices twisted at magic angles [see
Figs. 2(a) and 2(b)] develops super unit cells of length given
by approximately a/[2 sin(αm/2)]. That is, the super unit cells
grow by decreasing the magic angle. The super unit cells
contain regions where the interference between the lattices is
positive and hence the potential resembles that created by a
single lattice, shown also as insets in Figs. 2(a) and 2(b). In
addition, the super unit cells also contain regions at which
the interference is mostly destructive. There, the potential
develops flat channels along which transport is possible using

FIG. 2. Optical potential (A = 1) generated by two square (a) and two hexagonal (b) twisted lattices of optical tweezers twisted at magic
angles: αm ≈ 6.026◦ in (a) and αm ≈ 6.009◦ in (b). A super unit cell of the moiré pattern is highlighted (yellow dashed line). A drift force fd

points in the direction of two consecutive flat channels (orange arrows) and drives the motion of the particles. Characteristic particle trajectories
are depicted in orange. The amplitude of the external force is set to fd = 0.4V0/a (a) and to fd = 0.8V0/a (b). The optical potential of single
square and hexagonal lattices is shown in the top left-hand corner of the panels. Cuts of the potential (square lattices) perpendicular and along
the flat channel that passes through the origin are depicted in (c) as a function of the distance traveled by a particle initially at the origin.
The force required to travel along the channel (negative gradient of the potential) is significantly smaller than the force required to travel
perpendicular to the channel.
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FIG. 3. Critical force in twisted square (a) and hexagonal (b) lattices as a function of the magic angle for different values of A. (c) shows
the corresponding log - log plots for both types of lattices, as indicated. A linear fit on the log - log data for small magic angles returns a slope
s ≈ 1 in square lattices. In hexagonal lattices, s ≈ 1/3 for both A = 1 and A = 2, and s ≈ 1/2 for A = 5. The inset in (b) depicts the mobility
μ vs the magnitude of the drift force fd for the optical potential depicted in Fig. 2(a). The orange arrow indicates the value of the critical
force fc.

a weak drift force. The flat channels cross the super unit cell in
square twisted lattices [Fig. 2(a)] and are located at the edges
of the super unit cells in hexagonal twisted lattices [Fig. 2(b)].
We show in Fig. 2(c) a cut of the optical potential in the
directions perpendicular to a flat channel and also along the
flat channel, as indicated. The force required to travel along
the flat channel (given by the negative gradient of the optical
potential) is significantly weaker than that required to travel
perpendicular to the flat channel. Increasing the parameter A
makes the potential flatter along the central region of a flat
channel. However, it also makes the potential steeper near the
intersections between two flat channels. At the magic angles
the flat channels percolate the entire system.

C. Computer simulations

We neglect inertial effects and therefore use overdamped
dynamics to simulate the motion of a single colloidal particle.
At high laser intensity the Brownian forces can be neglected
as compared to the optical forces, we therefore set the temper-
ature to zero such that Brownian motion does not hinder the
phenomenology. The equation of motion for a single particle
reads

γ ṙ = −∇V (r) + fd , (5)

where γ is the friction coefficient against the implicit solvent,
ṙ indicates the time derivative of the position vector, and fd

is a homogeneous external drift force. The magnitude of a
lattice vector a, the energy parameter of the optical potential
V0, and the friction coefficient γ define our system of units.
The intrinsic timescale is therefore τ = γ a2/V0. We integrate
the equation of motion using an adaptive Heun-Euler scheme
[17], setting the relative allowed error per time step to 10−2

and the absolute allowed error in the positions to 10−4a.

D. Drift force

To drive the colloidal motion we use a drift force fd point-
ing along the bisector of the directions of two flat channels

[see Figs. 2(a) and 2(b)]. Hence,

fd = fd

(
cos αd

sin αd

)
, (6)

where the angle is αd (k) = (−1)kπ/4 in square lattices and
αd (k) = (−1)kπ/6 in hexagonal lattices, and the index k ∈ N
is the same as for the magic angles in Eq. (4). The prefactor
(−1)k alternates the direction of the drift force between the
first and the fourth quadrants, reflecting the fact that the flat
channels that support transport alternate from one magic angle
to the next one.

Figures 3(a) and 3(b) show the magnitude of the critical
drift force fc required to transport colloidal particles along the
flat channels; log - log plots are shown in Fig. 3(c). To calcu-
late fc we measure in the simulations the colloidal mobility μ

under the influence of the drift force,

μ = |�r(t f )|
t f fd

, (7)

where �r(t f ) is the distance traveled by a particle during a to-
tal time t f = 3000τ in twisted square lattices, and t f = 1000τ

in twisted hexagonal lattices. The colloidal mobility vanishes
for weak drift forces, increases rapidly at the critical drift force
fc, and it saturates for strong drift forces [see an example in
the inset of Fig. 3(b)].

In square lattices, the critical force at which transport
along the channels is activated decreases monotonically by
decreasing the magic angle [see Fig. 3(a)]. For small magic
angles, the critical force scales linearly with the magic angle
[see Fig. 3(c)]. In hexagonal lattices [Fig. 3(b)], the critical
force presents two distinct regimes. First, for small magic
angles, there is a rapid decrease of fc by increasing the magic
angle. In the second regime, depending on the steepness of
the potential, the critical force either slightly increases [e.g.,
A = 1 in Fig. 3(b)] or it slightly decreases [e.g., A = 5 in
Fig. 3(b)]. For both square and hexagonal lattices, increasing
the steepness of the potential A also increases the magnitude
of the critical drift force. Increasing A makes the potential
flatter along the channels, but it also increases the steepness
of the potential at the intersection between two flat channels
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FIG. 4. Distance traveled by a particle originally at the origin in twisted square (a) and hexagonal (b) lattices (A = 1) as a function of the
angle. In (a), the drift force fd = 0.4V0/a acts for a total time t = 3000. The arrows indicate the direction of the drift force, rotated 45◦ (solid
line) or −45◦ (dashed line) with respect to the direction of the first lattice vector. In (b), fd = 0.8V0/a, t = 1000τ , and the drift force is rotated
30◦ (solid line) or −30◦ (dashed line) with respect to the direction of the first lattice vector.

which results in higher values of the magnitude of the critical
force.

In Figs. 4(a) and 4(b) we represent the distance traveled
by a particle, d , as a function of the twist angle for both
square and hexagonal lattices, respectively. The particle is at
time zero located at the axis of rotation of both lattices (i.e.,
in the middle of a flat channel). The motion is driven by a
drift force acting for a total time 3000τ (1000τ ) in square
(hexagonal) lattices, and whose magnitude is larger than the
critical force required to move particles at any of the magic
angles that occur in the represented range of twist angles. For
each lattice, we plot two curves, corresponding to drift forces
that according to Eq. (6) point either in the first or in the fourth
quadrant. The curves clearly show that the edges that support
transport alternate from one magic angle to the next one. The
distance traveled by the particles presents sharp peaks at the
magic angles and hence even a small deviation from the magic
angle has a marked effect on the transport. In square lattices
the value of d at the magic angles decreases by increasing the
magic angle since the critical force increases with the magic
angle [see Fig. 3(a)], and we keep the magnitude of the drift
force constant. The opposite behavior is observed in hexago-
nal lattices for the range of angles shown in Fig. 4(b). That
is, d at the magic angles increases by increasing the magic
angle. For the range of angles shown in Fig. 4(b), the critical
drift force in hexagonal lattices decreases by increasing the
magic angle, which explains the observed traveled distance at
the magic angles.

III. CONCLUSIONS

Despite being substantially different systems, the colloidal
transport in twisted optical lattices is quite similar to the
transport in twisted magnetic patterns [16]. There, magnetic
colloidal particles are located in the middle plane between two
periodic magnetic patterns that are parallel to each other and
are twisted by a given angle. A uniform external magnetic
field Hext normal to the patterns couples to the field created
by both patterns Hp. The total magnetic potential is then
dominated by the cross term Vmag ∝ Hext · Hp. Both the total
magnetic potential in twisted patterns and the optical poten-

tial in twisted lattices of optical tweezers [Eq. (1)] coincide
only in the limit A → 0. Even though we have stayed away
from that limit here, the transport in both systems shares
similar characteristics, demonstrating the robustness of the
phenomena.

The setup described here with optical lattices offers ad-
ditional flexibility with respect to that in magnetic patterns.
First, the steepness of the potential of single optical lattices,
controlled here by the parameter A, can be adjusted experi-
mentally by varying the width of the tweezers. Moreover, in
contrast to magnetic patterns, optical tweezers are a standard
experimental technique which is widely available and it can
be used with nonmagnetic colloidal particles.

We have modeled the individual optical traps by isotropic
potentials. Experimentally, it is possible to control the shape
of the optical trap [18], and a certain degree of anisotropy is
almost unavoidable. Above a certain threshold, the anisotropy
of the optical trap can have an effect on, e.g., microrheology
measurements [18], and might also alter the structure of the
flat channels shown here. Controlling the anisotropy of the
traps (e.g., the length-to-width aspect ratio and the direction of
an elliptical trap) offers another degree of freedom to modify
the colloidal transport.

Several types of external forces are available experimen-
tally to drive the motion [19]. These include, among others,
electric and magnetic fields, pressure gradients, and the grav-
itational field of Earth in the case of micron-sized colloidal
particles with a substantial contrast between the bare and the
solvent mass densities.

There exist other twist angles for which the combined
potential of the two lattices is also periodic [16]. However, for
those angles, the direction along which transport is possible
along the flat channels changes inside the super unit cell.
Hence, stronger drift forces are required to cause macroscopic
transport.

We have focused here on the dilute regime where interpar-
ticle interactions do not play any role. Interesting collective
effects appear in many-body particle systems driven on
periodic landscapes, including structural transitions and direc-
tional locking [20–22]. It would be also interesting to study
collective effects in the dynamics of many-body particles in
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twisted lattices such as the superadiabatic forces [23,24] and
the occurrence of solitons [25].

Another interesting extension of the present work is the
characterization of the transport in twisted three-dimensional
optical lattices. Moreover, using periodic two-dimensional
magnetic patterns together with a homogeneous magnetic
field, one can topologically transport magnetic colloidal par-
ticles placed above the patterns [26–28]. There exist special
modulation loops of the orientation of the external field such
that once the loop returns to its initial position the particle
has been transported by one unit cell above the pattern. The

colloidal motion is topologically protected and takes place
in a plane due to the two-dimensional nature of the mag-
netic patterns. Optical potentials could be used to extend the
study of topologically protected colloidal transport to three-
dimensional systems.
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