Variational Nonequilibrium Statistical Mechanics

Wintersemester 2018/19

Lectures Prof. M. Schmidt
Tutorials PD Dr. Daniel de las Heras

Blatt 8 - Hausaufgabe

Übung am 21. December 2018

Aufgabe 1: Canonical and Grand canonical ensembles

a) Show that the probability of finding N particles in a grand canonical microstate, p_{N}, is maximum if $\bar{N}(\mu)=N$.
b) Represent and interpret the probabilities p_{n} as a function of μ for a one dimensional system of hard rods in a cavity of length $L / \sigma=4.9$.
c) Show that $\sum_{N=0}^{\infty} \exp (\beta \mu N)(N-\bar{N}) Z_{N}=0$.

Aufgabe 2: Ornstein-Zernike

Consider a homogeneous one dimensional fluid. Demonstrate the Ornstein-Zernike equation

$$
\begin{equation*}
h(x)=c(x)+\rho \int_{-\infty}^{\infty} d x^{\prime} c\left(x^{\prime}\right) h\left(\left|x-x^{\prime}\right|\right) \tag{1}
\end{equation*}
$$

implies the continuity of $h(x)-c(x)$ everywhere. (Note: h and c remain finite everywhere.)

Aufgabe 3: Virial equation

Consider a homogeneous fluid with pairwise interactions given by the interparticle potential $\phi(r)$. The virial equation for the pressure is

$$
\begin{equation*}
p=k_{B} T\left(\frac{\partial \ln Z}{\partial V}\right)=k_{B} T \rho+\frac{1}{3 V}\left\langle\sum_{i=1}^{N} \boldsymbol{r}_{i} \cdot \boldsymbol{f}_{i}\right\rangle \tag{2}
\end{equation*}
$$

with \boldsymbol{f}_{i} the internal forces acting on the i-th particle.
(a) Show that

$$
\sum_{i=1}^{N} \boldsymbol{r}_{i} \cdot \boldsymbol{f}_{i}=\sum_{i=1}^{N} \sum_{j, j<i} \boldsymbol{r}_{i j} \cdot \boldsymbol{f}_{i j},(3)
$$

with $\boldsymbol{f}_{i j}$ the force acting on the i-th particle due to the presence of particle j.
(b) Use the above results to find the virial equation

$$
\begin{equation*}
p=k_{B} T \rho-\frac{\rho^{2}}{6} \int d \boldsymbol{r} r \phi^{\prime}(r) g(r) \tag{4}
\end{equation*}
$$

with $g(r)$ the radial distribution function.
(c) Show that for hard-spheres (HS) of diameter σ, the virial equation simplifies to

$$
\begin{equation*}
p_{\mathrm{HS}}=k_{B} T \rho+k_{B} T \frac{2 \pi}{3} \rho^{2} \sigma^{3} g(\sigma) . \tag{5}
\end{equation*}
$$

Hint: $g(r) \exp (\beta \phi(r))$ is continuous everywhere.

Variational Nonequilibrium Statistical Mechanics

Wintersemester 2018/19
Lectures Prof. M. Schmidt

Blatt 8 - Präsenzübung

Übung am 21. December 2019

Aufgabe 4: Equation of state of hard rods in one dimension

The direct correlation function of a one-dimensional fluid of hard rods of length σ is

$$
c(x)= \begin{cases}-\frac{1}{1-\eta}-\frac{\eta}{(1-\eta)^{2}}\left(1-\frac{|x|}{\sigma}\right), & \text { if }|x|<\sigma \\ 0, & \text { otherwise }\end{cases}
$$

where $\eta=\rho \sigma$ is the packing fraction.
a) Using the result of Aufgabe 2 obtain the contact value of the radial distribution function, that is $\lim _{x \rightarrow \sigma^{+}} g(x)$.
b) Using the contact value of the radial distribution function obtain the equation of state $P(\rho)$.

