Variational Nonequilibrium Statistical Mechanics
 Wintersemester 2018/19
 Lectures Prof. M. Schmidt
 Tutorials PD Dr. Daniel de las Heras

UNIVERSITATT
BAYREUTH

Blatt 5 - Hausaufgabe

Übung am 30. November 2018

Aufgabe 1: Diffusion in a linear potential

A Brownian particle diffuses freely in $x \in(-\infty, \infty)$ under the influence of a linear potential $U(x)=\alpha x$. The particle is initially $(t=0)$ located at $x=0$.
a) Write down and solve the Smoluchowski equation for the time evolution of the phase space distribution function $\psi(x, t)$.
b) Sketch $\psi(x, t)$ for different times and interpret the result.
c) Calculate the mean position of the particle $\langle x(t)\rangle$. Use the result to estimate the time required for a colloidal silica sphere (diameter $d=100 \mathrm{~nm}$, mass density $\rho_{c}=2.3 \mathrm{~g} / \mathrm{cm}^{3}$) in an aqueous solvent $\left(\gamma=10^{-6} \mathrm{~g} / \mathrm{s}\right)$ to sediment to the bottom of a test tube of height $h=10 \mathrm{~cm}$.

Hint: Using a suitable change of variables the Smoluchowski equation reduces to the free diffusion equation under no external field which can be solved in the frequency domain.

Aufgabe 2: Ideal gas in an external field

a) Use the force balance equation to determine the equilibrium density profile of an ideal gas of Brownian particles under the influence of a conservative external force.
b) Does the equilibrium state change if instead of Brownian particles we consider an ideal gas of inertial particles?
c) A two dimensional system of non-interacting Brownian particles is confined in a square box of length H with periodic boundary conditions. The one-body velocity field is $\mathbf{v}(x, y)=v_{0} \sin (2 \pi y / H) \mathbf{e}_{\mathbf{x}}+$ $v_{0} \sin (2 \pi x / H) \mathbf{e}_{\mathbf{y}}$ and the density profile is given by $\rho(x, y)=\rho_{0}\left(1+\rho_{1}[\cos (2 \pi x / H)-\cos (2 \pi y / H)]\right)$. Here v_{0}, H, ρ_{0} and ρ_{1} are positive constants. Verify the system is in steady-state and find the conservative and non-conservative components of the external force that sustains the flow.

Variational Nonequilibrium Statistical Mechanics

Wintersemester 2018/19

Blatt 5 - Präsenzübung

Übung am 30. November 2018

Aufgabe 3: Mean square displacement

A Brownian particle is at the origin at time $t_{0}=0$, i.e. $\psi\left(\boldsymbol{r}, t_{0}\right)=\delta(\boldsymbol{r})$. Calculate the mean square displacement $\left\langle(\boldsymbol{r}(t))^{2}\right\rangle$ of the particle.

Aufgabe 4: Adjoint operator

Find the adjoint Smoluchowski operator (assume the phase space distribution vanishes at the boundary).

