Variational Nonequilibrium Statistical Mechanics

Wintersemester 2018/19
Lectures Prof. M. Schmidt
UNIVERSITÄT
BAYREUTH
Tutorials PD Dr. Daniel de las Heras

Blatt 4 - Hausaufgabe

Übung am 23. November 2018

Aufgabe 1: Kinetic stress

a) Show that in equilibrium the divergence of the kinetic stress tensor reduces to the ideal gas diffusion:

$$
\begin{equation*}
\nabla \cdot \boldsymbol{\tau}=-k_{B} T \nabla \rho \tag{1}
\end{equation*}
$$

b) Prove that

$$
\begin{equation*}
\sum_{i} \int d \boldsymbol{r}^{N} d \boldsymbol{p}^{N}\left(\nabla_{i} \ln \psi\left(\boldsymbol{r}^{N}, \boldsymbol{p}^{N}, t\right)\right) \psi\left(\boldsymbol{r}^{N}, \boldsymbol{p}^{N}, t\right) \delta\left(\boldsymbol{r}-\boldsymbol{r}_{i}\right)=\nabla \rho(\boldsymbol{r}, t), \tag{2}
\end{equation*}
$$

with ψ the phase space distribution function.

Aufgabe 2: Clausius-Virial

a) Demonstrate the virial theorem, which states that if positions and momenta remain bounded then

$$
\begin{equation*}
\left\langle\sum_{i} \mathbf{f}_{\mathbf{i}} \cdot \mathbf{r}_{\mathbf{i}}\right\rangle=-2\langle T\rangle \tag{3}
\end{equation*}
$$

Here T is the total kinetic energy and $\langle\cdot\rangle$ denotes a time average over a time period $\tau \rightarrow \infty$.
b) Use the above result to find a relation between the time averages of kinetic and potential energies in a system with a pairwise interparticle potential given by $\phi(r)=\alpha r^{n}$.

Aufgabe 3: Phase space

a) Find and sketch the trajectories in phase space of a mass m experiencing vertical free fall motion without air resistance. The probability distribution of a collection of identical masses has at a given time a rectangular shape in phase space (see figure). What is the shape of the probability distribution at a later time? Show explicitly that the total area occupied by the probability distribution remains constant over time.

b) A beam of protons has a circular cross section of radius r_{1} in the plane perpendicular to the direction of the beam. The momenta are distributed in a circle of radius p_{1} in phase space. Using magnets the beam is focused (let $r_{2}<r_{1}$ be the new radius). How does the distribution of momenta change?

Variational Nonequilibrium Statistical Mechanics

Wintersemester 2018/19

Blatt 4 - Präsenzübung

Übung am 23. November 2018

Aufgabe 4: Self adjoint operators

a) Show that $\hat{\boldsymbol{p}}_{i}, \hat{H}, \hat{n}, \hat{\mathbf{J}}$, and $\hat{\boldsymbol{\tau}}$ are self-adjoint operators.
b) Let $\hat{\mathbf{B}}$ be a non-self-adjoint operator $\hat{\mathbf{B}} \neq \hat{\mathbf{B}}^{\dagger}$. Show that

$$
\begin{equation*}
\langle\hat{\mathbf{A}}\rangle=\operatorname{Re}\langle\hat{\mathbf{B}}\rangle, \tag{1}
\end{equation*}
$$

with $\hat{\mathbf{A}}=\frac{1}{2}\left(\hat{\mathbf{B}}+\hat{\mathbf{B}}^{\dagger}\right)$.

