

Blatt 4 - Hausaufgabe

Übung am 23. November 2018

Aufgabe 1: Kinetic stress

a) Show that in equilibrium the divergence of the kinetic stress tensor reduces to the ideal gas diffusion:

$$\nabla \cdot \boldsymbol{\tau} = -k_B T \nabla \rho \tag{1}$$

b) Prove that

$$\sum_{i} \int d\boldsymbol{r}^{N} d\boldsymbol{p}^{N} \left(\nabla_{i} \ln \psi(\boldsymbol{r}^{N}, \boldsymbol{p}^{N}, t) \right) \psi(\boldsymbol{r}^{N}, \boldsymbol{p}^{N}, t) \delta(\boldsymbol{r} - \boldsymbol{r}_{i}) = \nabla \rho(\boldsymbol{r}, t),$$
(2)

with ψ the phase space distribution function.

Aufgabe 2: Clausius-Virial

a) Demonstrate the virial theorem, which states that if positions and momenta remain bounded then

$$\left\langle \sum_{i} \mathbf{f}_{i} \cdot \mathbf{r}_{i} \right\rangle = -2\langle T \rangle.$$
(3)

Here T is the total kinetic energy and $\langle \cdot \rangle$ denotes a time average over a time period $\tau \to \infty$.

b) Use the above result to find a relation between the time averages of kinetic and potential energies in a system with a pairwise interparticle potential given by $\phi(r) = \alpha r^n$.

Aufgabe 3: Phase space

a) Find and sketch the trajectories in phase space of a mass m experiencing vertical free fall motion without air resistance. The probability distribution of a collection of identical masses has at a given time a rectangular shape in phase space (see figure). What is the shape of the probability distribution at a later time? Show explicitly that the total area occupied by the probability distribution remains constant over time.

b) A beam of protons has a circular cross section of radius r_1 in the plane perpendicular to the direction of the beam. The momenta are distributed in a circle of radius p_1 in phase space. Using magnets the beam is focused (let $r_2 < r_1$ be the new radius). How does the distribution of momenta change?

Blatt 4 - Präsenzübung

Übung am 23. November 2018

Aufgabe 4: Self adjoint operators

a) Show that $\hat{\pmb{p}}_i, \hat{H},\, \hat{n},\, \hat{\mathbf{J}},\, \text{and} \ \hat{\pmb{\tau}}$ are self-adjoint operators.

b) Let $\hat{\mathbf{B}}$ be a non-self-adjoint operator $\hat{\mathbf{B}} \neq \hat{\mathbf{B}}^{\dagger}$. Show that

$$\langle \hat{\mathbf{A}} \rangle = \operatorname{Re} \langle \hat{\mathbf{B}} \rangle,$$
 (1)

with $\hat{\mathbf{A}} = \frac{1}{2}(\hat{\mathbf{B}} + \hat{\mathbf{B}}^{\dagger}).$