Variational Nonequilibrium Statistical Mechanics

Wintersemester 2018/19
Lectures Prof. M. Schmidt
UNIVERSITATT
BAYREUTH
Tutorials PD Dr. Daniel de las Heras

Blatt 3 - Hausaufgabe

Übung am 16. November 2018

Aufgabe 1: Nonconservative forces

a) D'Alembert's principle reads

$$
\begin{equation*}
\sum_{i}\left(\boldsymbol{F}_{i}-m_{i} \boldsymbol{a}_{i}\right) \cdot \delta \boldsymbol{r}_{i}=0, \tag{1}
\end{equation*}
$$

where \boldsymbol{F}_{i} is the total applied force (excluding constraint forces) acting on the i-th particle, and $\delta \boldsymbol{r}_{i}$ is a virtual displacement of the i-th particle consistent with the constraints. Show that rewriting (1) in terms of the generalized coordinates \boldsymbol{q}, that is $\boldsymbol{r}_{i}=\boldsymbol{r}_{i}(\boldsymbol{q}, t)$, results in the following Lagrange equations (valid also for nonconservative forces)

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\boldsymbol{q}}}\right)-\frac{\partial T}{\partial \boldsymbol{q}}=\boldsymbol{Q} \tag{2}
\end{equation*}
$$

where T is the total kinetic energy and Q_{j} is the generalized force associated to the generalized coordinate j, and it is given by

$$
\begin{equation*}
Q_{j}=\sum_{i} \boldsymbol{F}_{i} \cdot \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \tag{3}
\end{equation*}
$$

Hint:

$$
\frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}}=\frac{\partial \dot{\boldsymbol{r}}_{i}}{\partial \dot{q}_{j}}, \quad \frac{d}{d t}\left(\frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}}\right)=\frac{\partial \dot{\boldsymbol{r}}_{i}}{\partial q_{j}}
$$

b) A single point mass m is attached to a rigid arm of negligible mass and length l. The mass is subject to a gravitational field and driven by a periodic non-conservative horizontal external force $\boldsymbol{f}=f_{0} \cos (\omega t) \hat{\boldsymbol{x}}$. Find the equations of motion using both Eq. (3) and the Gibbs-Appell formulation.

Aufgabe 2: Nonholonomic constraints

Consider the mechanical system depicted in the figure. A mass m is attached to the end of a massless string and restricted to move vertically. Using two massless pulleys separated by a distance ρ, the string is wound around a drum of radius b. The drum is attached to a wheel of radius a forming a rigid solid of total mass M. Due to the vertical descent of the mass, the wheel rolls without slipping on the horizontal $x y$ plane. The moment of inertia of the system wheel-drum around the symmetry axis is I_{1}, and around an axis normal to the symmetry axis that passes through the center of the system is I_{2}. A massless frame with legs that slide without friction keeps the wheel vertical. An external force parallel to the direction tangent to the trajectory of the wheel, $\boldsymbol{f}_{0}=\left(f_{0} \cos \theta, f_{0} \sin \theta\right)$, is applied to the mass m.
(a) Find the constraints of the motion.
(b) Show that for the limit $\rho \rightarrow 0$ the constraints can be written as

$$
\begin{align*}
\dot{x}_{m}^{2}+\dot{y}_{m}^{2} & =\frac{a^{2}}{b^{2}} \dot{z}_{m}^{2} \\
\dot{x}_{m} \sin \theta-\dot{y}_{m} \cos \theta & =0 \tag{4}
\end{align*}
$$

Here $\boldsymbol{r}_{m}(t)$ denotes the position of the mass.
(c) Use the Gibbs-Appell formulation to find the equations of motion if both $\rho \rightarrow 0$ and $I_{1} \rightarrow 0$.
(d) Solve the equations of motion obtained in (c) for the component of the acceleration tangent to the trajectory of the wheel,

$$
\begin{equation*}
a_{t}=\frac{d}{d t} \sqrt{\dot{x}_{m}^{2}+\dot{y}_{m}^{2}} \tag{5}
\end{equation*}
$$

Variational Nonequilibrium Statistical Mechanics

Wintersemester 2018/19
Lectures Prof. M. Schmidt

Blatt 3 - Präsenzübung

Übung am 16. November 2018

Aufgabe 3: Nonholonomic constraints II

Find and sketch the trajectory of the center of mass of the disk in the Appell-Hamel problem (Blatt 3 - Aufgabe 2) in the limit $\rho \rightarrow 0, I_{1} \rightarrow 0$ for the following cases:
(a)

$$
\begin{aligned}
x_{m}(t=0)= & =0, \\
y_{m}(0) & =0, \\
\dot{x}_{m}(0) & =0, \\
\dot{y}_{m}(0) & =0, \\
\theta(t=0) & =\theta_{0}, \\
\dot{\theta}(0) & =0,
\end{aligned}
$$

(b)

$$
\begin{aligned}
x_{m}(t=0) & =0 \\
y_{m}(0) & =0 \\
\dot{x}_{m}(0) & =0 \\
\dot{y}_{m}(0) & =0 \\
\theta(t=0) & =0, \\
\dot{\theta}(0) & =\omega,
\end{aligned}
$$

