Variational Nonequilibrium Statistical Mechanics

Wintersemester 2018/19
Lectures Prof. M. Schmidt
UNIVERSITÄT
BAYREUTH
Tutorials PD Dr. Daniel de las Heras

Blatt 12 - Hausaufgabe

Übung am 1. Februar 2019

Aufgabe 1: Lane formation

Consider an equimolar ($x_{1}=x_{2}$, with x_{i} the composition of species i) binary mixture of spherical colloidal particles. The only difference between both species is the buoyant mass, which is m for species 1 and $-m$ for species 2 . When the mixture is subject to a sufficiently strong homogeneous gravitational field $\mathbf{f}_{\text {ext }}=g \mathbf{e}_{\mathbf{y}}$ the particles demix and form two lanes, each one rich in one species. The system reaches a steady state in which the density profiles are well described by:

$$
\begin{array}{r}
\rho_{1}(x)=\rho_{b}(1+\tanh (x)), \\
\rho_{2}(x)=\rho_{b}(1+\tanh (-x)) . \tag{1}
\end{array}
$$

a) Sketch a microstate of the system indicating all forces acting on each species.
b) Find the value of the x-component of the superadiabatic forces in steady state.

Aufgabe 2: Viscous and structural forces

A two-dimensional system of isotropic colloidal particles is in steady state with velocity profile

$$
\begin{equation*}
\mathbf{v}(x, y)=\binom{v_{1} \sin (2 \pi y / L)}{v_{2}} \tag{2}
\end{equation*}
$$

and constant density profile. Here v_{1} and v_{2} are positive constants and $L \gg \sigma$, with σ the particle length. Find an approximation for the external field required to sustain the flow. Sketch and interpret the results.

